import gradio as gr from huggingface_hub import InferenceClient import os import json import importlib import sys """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") ######## import os import requests import base64 GITHUB_API_KEY = os.environ.get('GITHUB_API_KEY') GITHUB_API_URL_PY = os.environ.get('GITHUB_API_URL_PY') GITHUB_API_URL_JSON = os.environ.get('GITHUB_API_URL_JSON') GITHUB_API_URL = os.environ.get('GITHUB_API_URL') HEADERS = {"Authorization": f"token {GITHUB_API_KEY}"} def fetch_and_save_files(): """ Fetches all Python files from a specific folder in a private GitHub repository and saves them locally. """ response = requests.get(GITHUB_API_URL, headers=HEADERS) if response.status_code != 200: raise Exception(f"Failed to list files: {response.status_code} - {response.text}") files = response.json() py_files = [f for f in files if f['name'].endswith('.py')] os.makedirs("temp_modules", exist_ok=True) # Create a local folder to save the files for file in py_files: file_name = file["name"] file_url = file["url"] # API URL to fetch content # Fetch file content file_response = requests.get(file_url, headers=HEADERS) if file_response.status_code != 200: print(f"Failed to fetch {file_name}") continue file_content = base64.b64decode(file_response.json()["content"]).decode("utf-8") # Save file locally local_path = os.path.join("temp_modules", file_name) with open(local_path, "w") as f: f.write(file_content) print(f"Saved {file_name} to {local_path}") print("All Python files have been saved locally.") def load_modules(): """ Dynamically loads all saved Python files as modules. """ temp_folder = "temp_modules" sys.path.append(temp_folder) # Add folder to Python path modules = {} for file_name in os.listdir(temp_folder): if file_name.endswith(".py"): module_name = file_name[:-3] # Strip ".py" extension try: modules[module_name] = importlib.import_module(module_name) print(f"Loaded module: {module_name}") except Exception as e: print(f"Failed to load module {module_name}: {e}") return modules # Step 2: Fetch and save Python files, then load them dynamically try: fetch_and_save_files() modules = load_modules() print("\nModules loaded successfully. You can now call their methods freely!") # Example usage # Assuming you have a class or function in main.py main_module = modules.get("main20") # Access the 'main.py' module classes_module = modules.get("second_main") # Access the 'classes.py' module if main_module and hasattr(main_module, "main_function"): main_module.main_function() # Call a function from main.py if classes_module and hasattr(classes_module, "SomeClass"): obj = classes_module.SomeClass() # Instantiate a class from classes.py obj.some_method() # Call a method except Exception as e: print("Error:", e) a = classes_module.clio(4) b = a.print_man() print(b) c = main_module.first_func(778) print(c) ######## def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()