kurilee's picture
Update app.py
bfb27c0
import gradio as gr
import torch
from diffusers import LCMScheduler, AutoPipelineForText2Image
# model_id = "Lykon/dreamshaper-7"
# prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
def run(checkpoint, prompt):
model_id = checkpoint
adapter_id = "latent-consistency/lcm-lora-sdv1-5"
pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float32, safety_checker=None).to("cpu")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
# load and fuse lcm lora
pipe.load_lora_weights(adapter_id)
pipe.fuse_lora()
# disable guidance_scale by passing 0
image = pipe(prompt=prompt, num_inference_steps=4, guidance_scale=0, width=512, height=512).images[0]
return image
with gr.Blocks() as demo:
input_checkpoint = gr.Text(value="Lykon/dreamshaper-8", label="Checkpoint")
input_prompt = gr.Text(value="Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", label="Prompt")
out = gr.Image(type="pil")
btn = gr.Button("Run")
btn.click(fn=run, inputs=[input_checkpoint, input_prompt], outputs=out)
demo.launch()