import streamlit as st import pdfplumber import pandas as pd import re import spacy import torch from transformers import AutoTokenizer, AutoModelForQuestionAnswering, AutoModelForTokenClassification, pipeline import base64 import io from datetime import datetime import json #below liraries to fix the axios error 403 code from pathlib import Path import os #below code to match the docker file config the code worked without this on hugging face so needs to be checked out further #UPLOAD_FOLDER = os.getenv('UPLOAD_FOLDER', '/tmp/uploads') #Path(UPLOAD_FOLDER).mkdir(exist_ok=True) # Ensure directory exists # Set page config st.set_page_config( page_title="Regulatory Report Checker", page_icon="📋", layout="wide" ) # Application title and description st.title("Regulatory Report Checker") st.markdown(""" This application analyzes SEC filings (10-K, 13F, etc.) to extract: - Regulatory obligations - Risk statements - Regulatory agency references - Potential violations """) st.markdown(""" """, unsafe_allow_html=True) # Function to display PDFs def display_pdf(file, height=350): # Handle both file paths and file-like objects if isinstance(file, str): # It's a file path if os.path.exists(file): with open(file, "rb") as f: base64_pdf = base64.b64encode(f.read()).decode("utf-8") else: st.error("Selected PDF not found.") return else: # It's a file-like object (e.g., from file uploader) base64_pdf = base64.b64encode(file.read()).decode("utf-8") # Reset the file pointer to the beginning for later processing file.seek(0) pdf_display = f""" """ st.markdown(pdf_display, unsafe_allow_html=True) # Define sample PDFs sample_pdfs = { "📄 Meridian Financial Services, Inc. Annual Report (10-K)": "example.pdf", "📄 Annual Report (10-K)": "Mock_Form_10K.pdf", "📊 Sample Investment Holdings (13F)": "Mock_Form_13F.pdf", } # Initialize session state for selected PDF if "selected_pdf" not in st.session_state: st.session_state["selected_pdf"] = list(sample_pdfs.values())[0] # Sidebar for model selection and settings st.sidebar.header("Analysis Settings") # Model selection nlp_model = st.sidebar.selectbox( "Select NLP Model", ["distilbert-base-uncased", "deepset/deberta-v3-base-squad2", "distilbert-base-cased-distilled-squad"] ) # Entity types to identify entity_types = st.sidebar.multiselect( "Entity Types to Extract", ["Obligation", "Regulatory Agency", "Risk", "Deadline", "Penalty", "Amount"], default=["Obligation", "Regulatory Agency", "Risk"] ) # QA mode selection qa_mode = st.sidebar.checkbox("Enable Question Answering", value=True) # Custom questions for QA if qa_mode: default_questions = [ "What are the regulatory obligations mentioned?", "Are there any violations or risk statements?", "What regulatory agencies are mentioned?", "What are the compliance deadlines?" ] # Allow users to edit questions or add new ones st.sidebar.subheader("Custom Questions") custom_questions = [] # Start with default questions that can be modified for i, default_q in enumerate(default_questions): q = st.sidebar.text_input(f"Question {i+1}", value=default_q) if q: custom_questions.append(q) # Option to add more questions new_q = st.sidebar.text_input("Additional Question") if new_q: custom_questions.append(new_q) # Risk keyword settings st.sidebar.subheader("Risk Keywords") default_risk_keywords = "non-compliance, penalty, violation, risk, fine, investigation, audit, failure, breach, warning" risk_keywords = st.sidebar.text_area("Enter risk keywords (comma separated)", value=default_risk_keywords) risk_keywords_list = [keyword.strip() for keyword in risk_keywords.split(",")] # Add confidence threshold slider confidence_threshold = st.sidebar.slider("Confidence Threshold", 0.0, 1.0, 0.5) # Function to extract text from PDF @st.cache_data def extract_text_from_pdf(pdf_file): text_by_page = {} with pdfplumber.open(pdf_file) as pdf: for i, page in enumerate(pdf.pages): text = page.extract_text() if text: text_by_page[i+1] = text # Combine all text full_text = "\n\n".join(text_by_page.values()) return full_text, text_by_page # Function to highlight risk keywords in text def highlight_risk_terms(text, risk_terms): highlighted_text = text for term in risk_terms: pattern = re.compile(r'\b' + re.escape(term) + r'\b', re.IGNORECASE) highlighted_text = pattern.sub(f"**:red[{term}]**", highlighted_text) return highlighted_text # Function to perform NER using spaCy with custom rules def perform_ner(text, entity_types): # Load spaCy model nlp = spacy.load("en_core_web_sm") # Add custom rules for regulatory entities ruler = nlp.add_pipe("entity_ruler") # Define patterns for each entity type patterns = [] # Regulatory agency patterns if "Regulatory Agency" in entity_types: agencies = ["SEC", "FINRA", "CFTC", "FDIC", "Federal Reserve", "OCC", "CFPB", "FTC", "IRS", "DOJ", "EPA", "FDA", "OSHA", "Securities and Exchange Commission"] for agency in agencies: patterns.append({"label": "REGULATORY_AGENCY", "pattern": agency}) # Obligation patterns if "Obligation" in entity_types: obligation_triggers = ["must", "required to", "shall", "obligation to", "mandated", "compliance with", "comply with", "required by", "in accordance with"] for trigger in obligation_triggers: patterns.append({"label": "OBLIGATION", "pattern": [{"LOWER": trigger}]}) # Risk patterns if "Risk" in entity_types: risk_triggers = ["risk", "exposure", "vulnerable", "susceptible", "hazard", "threat", "danger", "liability", "non-compliance", "violation"] for trigger in risk_triggers: patterns.append({"label": "RISK", "pattern": trigger}) # Deadline patterns if "Deadline" in entity_types: deadline_triggers = ["by", "due", "deadline", "within", "no later than"] for trigger in deadline_triggers: patterns.append({"label": "DEADLINE", "pattern": [{"LOWER": trigger}, {"ENT_TYPE": "DATE"}]}) # Penalty patterns if "Penalty" in entity_types: penalty_triggers = ["fine", "penalty", "sanction", "enforcement", "punitive", "disciplinary"] for trigger in penalty_triggers: patterns.append({"label": "PENALTY", "pattern": trigger}) # Add patterns to ruler ruler.add_patterns(patterns) # Process text doc = nlp(text) # Extract entities entities = [] for ent in doc.ents: if ent.label_ in ["REGULATORY_AGENCY", "OBLIGATION", "RISK", "DEADLINE", "PENALTY"] or ent.label_ == "MONEY": entity_type = ent.label_ if ent.label_ == "MONEY" and "Amount" in entity_types: entity_type = "AMOUNT" entities.append({ "text": ent.text, "start": ent.start_char, "end": ent.end_char, "type": entity_type, "context": text[max(0, ent.start_char - 50):min(len(text), ent.end_char + 50)] }) return entities # Function to perform Question Answering @st.cache_resource def load_qa_model(model_name): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForQuestionAnswering.from_pretrained(model_name) qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer) return qa_pipeline def perform_qa(text, questions, qa_pipeline, confidence_threshold): # Split text into chunks if it's too long max_length = 512 # Typical max length for transformer models chunks = [] # Simple chunking by sentences sentences = re.split(r'(?<=[.!?])\s+', text) current_chunk = "" for sentence in sentences: if len(current_chunk) + len(sentence) < max_length: current_chunk += sentence + " " else: chunks.append(current_chunk.strip()) current_chunk = sentence + " " if current_chunk: chunks.append(current_chunk.strip()) # If text is still short enough, just use it directly if not chunks: chunks = [text] # Process each question across all chunks results = [] for question in questions: best_answer = {"answer": "", "score": 0, "context": ""} for chunk in chunks: try: result = qa_pipeline(question=question, context=chunk) if result["score"] > best_answer["score"] and result["score"] >= confidence_threshold: best_answer = { "answer": result["answer"], "score": result["score"], "context": chunk[max(0, result["start"] - 100):min(len(chunk), result["end"] + 100)] } except Exception as e: st.error(f"Error processing chunk with question '{question}': {str(e)}") continue if best_answer["answer"]: results.append({ "question": question, "answer": best_answer["answer"], "confidence": best_answer["score"], "context": best_answer["context"] }) else: results.append({ "question": question, "answer": "No answer found with sufficient confidence.", "confidence": 0, "context": "" }) return results # Function to create downloadable file def get_download_link(data, filename, text): """Generate a link to download the given data as a file""" if isinstance(data, pd.DataFrame): csv = data.to_csv(index=False) b64 = base64.b64encode(csv.encode()).decode() else: # Assume JSON b64 = base64.b64encode(json.dumps(data, indent=4).encode()).decode() href = f'{text}' return href # File upload # Create two columns for PDF preview and file uploader preview_col, upload_col = st.columns([1, 1]) with upload_col: st.header("Upload Document") uploaded_file = st.file_uploader("Upload SEC Filing (PDF)", type=["pdf"]) # Sample PDF selector st.markdown("### Or choose a sample:") st.markdown( "In case the preview is not working, you can find these samples at [Notion](https://www.notion.so/Sample-Mock-Documents-for-Analysis-1d14cfc2eb35804cafa7e7db7531b1b8?pvs=4)") sample_cols = st.columns(len(sample_pdfs)) for i, (label, file_path) in enumerate(sample_pdfs.items()): with sample_cols[i]: if st.button(label): st.session_state["selected_pdf"] = file_path # When a sample is selected, set it as if it was uploaded try: with open(file_path, "rb") as f: file_bytes = f.read() uploaded_file = io.BytesIO(file_bytes) uploaded_file.name = file_path except FileNotFoundError: st.error(f"Sample file {file_path} not found.") with preview_col: st.header("Document Preview") # Display uploaded file or selected sample if uploaded_file: display_pdf(uploaded_file, height=400) elif st.session_state["selected_pdf"]: display_pdf(st.session_state["selected_pdf"], height=400) else: st.info("Upload a PDF or select a sample to preview.") if uploaded_file: if hasattr(uploaded_file, 'seek'): uploaded_file.seek(0) with st.spinner("Processing PDF file..."): # Extract text from PDF full_text, text_by_page = extract_text_from_pdf(uploaded_file) # Show text extraction status st.success(f"Successfully extracted text from {len(text_by_page)} pages") # Allow user to view the extracted text with st.expander("View Extracted Text"): page_selection = st.selectbox( "Select page to view", ["All"] + list(text_by_page.keys()) ) if page_selection == "All": st.text_area("Full Text", full_text, height=300) else: st.text_area(f"Page {page_selection}", text_by_page[page_selection], height=300) # Begin analysis section st.header("Analysis Results") # Create tabs for different analysis methods ner_tab, qa_tab, risk_tab, summary_tab = st.tabs(["Entity Recognition", "Question Answering", "Risk Analysis", "Summary"]) # NER Analysis with ner_tab: with st.spinner("Performing Entity Recognition..."): entities = perform_ner(full_text, entity_types) if entities: # Group entities by type entities_by_type = {} for entity in entities: if entity["type"] not in entities_by_type: entities_by_type[entity["type"]] = [] entities_by_type[entity["type"]].append(entity) # Display entities by type for entity_type, type_entities in entities_by_type.items(): st.subheader(f"{entity_type} Entities") # Create a dataframe for better display df = pd.DataFrame([{ "Text": e["text"], "Context": e["context"] } for e in type_entities]) st.dataframe(df, use_container_width=True) # Provide download link for this entity type st.markdown( get_download_link( df, f"{entity_type.lower()}_entities.csv", f"Download {entity_type} Entities as CSV" ), unsafe_allow_html=True ) else: st.info("No entities detected. Try adjusting the entity types in the sidebar.") # Question Answering with qa_tab: if qa_mode: with st.spinner("Please note: Response times may take up to a minute due to CPU usage on the free tier of Hugging Face."): try: qa_pipeline = load_qa_model(nlp_model) qa_results = perform_qa(full_text, custom_questions, qa_pipeline, confidence_threshold) # Display QA results for result in qa_results: st.subheader(result["question"]) if result["confidence"] > 0: st.markdown(f"**Answer:** {result['answer']}") st.markdown(f"**Confidence:** {result['confidence']:.2f}") with st.expander("Show Context"): # Highlight the answer in the context highlighted_context = result["context"].replace( result["answer"], f"**:blue[{result['answer']}]**" ) st.markdown(highlighted_context) else: st.info("No answer found with sufficient confidence.") # Provide download link for QA results qa_df = pd.DataFrame(qa_results) st.markdown( get_download_link( qa_df, "qa_results.csv", "Download QA Results as CSV" ), unsafe_allow_html=True ) except Exception as e: st.error(f"Error performing question answering: {str(e)}") else: st.info("Question Answering is disabled. Enable it from the sidebar.") # Risk Analysis with risk_tab: with st.spinner("Analyzing Risk Keywords..."): # Find paragraphs with risk keywords paragraphs = re.split(r'\n\n+', full_text) risk_paragraphs = [] for para in paragraphs: if any(re.search(r'\b' + re.escape(keyword) + r'\b', para, re.IGNORECASE) for keyword in risk_keywords_list): # Count how many risk keywords are found keyword_count = sum(1 for keyword in risk_keywords_list if re.search(r'\b' + re.escape(keyword) + r'\b', para, re.IGNORECASE)) # Calculate a simple risk score based on keyword density risk_score = min(1.0, keyword_count / 10) # Cap at 1.0 risk_paragraphs.append({ "paragraph": para, "keyword_count": keyword_count, "risk_score": risk_score, "highlighted_text": highlight_risk_terms(para, risk_keywords_list) }) if risk_paragraphs: # Sort by risk score (highest first) risk_paragraphs.sort(key=lambda x: x["risk_score"], reverse=True) # Display risk paragraphs st.subheader(f"Found {len(risk_paragraphs)} Paragraphs with Risk Keywords") # Overall document risk score (average of top 5 paragraphs) top_paragraphs = risk_paragraphs[:min(5, len(risk_paragraphs))] overall_risk = sum(p["risk_score"] for p in top_paragraphs) / len(top_paragraphs) # Display risk meter st.subheader("Document Risk Assessment") st.progress(overall_risk) risk_level = "Low" if overall_risk < 0.4 else "Medium" if overall_risk < 0.7 else "High" st.markdown(f"**Risk Level: :{'green' if risk_level == 'Low' else 'orange' if risk_level == 'Medium' else 'red'}[{risk_level}]** (Score: {overall_risk:.2f})") # Display individual paragraphs for i, para in enumerate(risk_paragraphs): with st.expander(f"Risk Paragraph {i+1} (Score: {para['risk_score']:.2f})"): st.markdown(para["highlighted_text"]) # Provide download link for risk paragraphs risk_df = pd.DataFrame([{ "Risk Score": p["risk_score"], "Keyword Count": p["keyword_count"], "Paragraph": p["paragraph"] } for p in risk_paragraphs]) st.markdown( get_download_link( risk_df, "risk_paragraphs.csv", "Download Risk Analysis as CSV" ), unsafe_allow_html=True ) else: st.info("No risk keywords found in the document.") # Summary Tab with summary_tab: st.subheader("Executive Summary") # Create a simple executive summary based on findings summary_points = [] # Add entity summary if entities: entity_counts = {} for entity in entities: entity_type = entity["type"] if entity_type not in entity_counts: entity_counts[entity_type] = 0 entity_counts[entity_type] += 1 entity_summary = ", ".join([f"{count} {entity_type}" for entity_type, count in entity_counts.items()]) summary_points.append(f"Found {entity_summary}.") # Add risk summary if 'risk_paragraphs' in locals() and risk_paragraphs: top_risk = risk_paragraphs[0] summary_points.append(f"Highest risk section identified with score {top_risk['risk_score']:.2f} containing keywords: {', '.join([kw for kw in risk_keywords_list if re.search(r'\b' + re.escape(kw) + r'\b', top_risk['paragraph'], re.IGNORECASE)])}.") # Add document risk level if 'overall_risk' in locals(): summary_points.append(f"Overall document risk level: {risk_level}.") # Add QA summary if qa_mode and 'qa_results' in locals() and qa_results: # Find the highest confidence answer best_qa = max(qa_results, key=lambda x: x["confidence"]) if best_qa["confidence"] > 0: summary_points.append(f"Key finding: In response to '{best_qa['question']}', the document states '{best_qa['answer']}' (confidence: {best_qa['confidence']:.2f}).") if summary_points: for point in summary_points: st.markdown(f"• {point}") else: st.info("Not enough data to generate a summary. Try adjusting analysis parameters.") # Export all results as JSON all_results = { "filename": uploaded_file.name, "analysis_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "entities": entities if 'entities' in locals() else [], "qa_results": qa_results if 'qa_results' in locals() else [], "risk_paragraphs": [{k: v for k, v in p.items() if k != 'highlighted_text'} for p in risk_paragraphs] if 'risk_paragraphs' in locals() else [], "summary_points": summary_points } st.markdown( get_download_link( all_results, f"regulatory_analysis_{datetime.now().strftime('%Y%m%d%H%M%S')}.json", "Download Complete Analysis Results (JSON)" ), unsafe_allow_html=True ) else: # Show a demo or instructions st.info("Upload a PDF file to begin analysis. The tool will extract text and perform NLP analysis to identify regulatory obligations, risks, and more.") # Sample visualization of what the tool does st.subheader("What This Tool Does") col1, col2, col3 = st.columns(3) with col1: st.markdown("**1. Extract Text**") st.markdown("Upload SEC filings and extract all text content from PDFs.") with col2: st.markdown("**2. Analyze Content**") st.markdown("Use NLP to identify regulatory entities, answer questions, and flag risk language.") with col3: st.markdown("**3. Export Results**") st.markdown("Download structured analysis results for review by your legal and compliance teams.") # Add footer with information st.markdown("---") st.markdown(""" [GitHub Repository](https://koulmesahil.github.io/) | [LinkedIn](https://www.linkedin.com/in/sahilkoul123/) """)