Update app.py
Browse files
app.py
CHANGED
@@ -4,22 +4,11 @@ import pandas as pd
|
|
4 |
import re
|
5 |
import spacy
|
6 |
import torch
|
7 |
-
from transformers import pipeline
|
8 |
import base64
|
9 |
import io
|
10 |
from datetime import datetime
|
11 |
import json
|
12 |
-
from pathlib import Path
|
13 |
-
import os
|
14 |
-
import sys
|
15 |
-
|
16 |
-
# Print Python and package versions for debugging
|
17 |
-
st.sidebar.write(f"Python version: {sys.version}")
|
18 |
-
st.sidebar.write(f"Transformers version: {__import__('transformers').__version__}")
|
19 |
-
|
20 |
-
# Configuration for Docker deployment
|
21 |
-
UPLOAD_FOLDER = os.getenv('UPLOAD_FOLDER', '/tmp/uploads')
|
22 |
-
Path(UPLOAD_FOLDER).mkdir(exist_ok=True) # Ensure directory exists
|
23 |
|
24 |
# Set page config
|
25 |
st.set_page_config(
|
@@ -41,9 +30,11 @@ This application analyzes SEC filings (10-K, 13F, etc.) to extract:
|
|
41 |
# Sidebar for model selection and settings
|
42 |
st.sidebar.header("Analysis Settings")
|
43 |
|
44 |
-
#
|
45 |
-
nlp_model =
|
46 |
-
|
|
|
|
|
47 |
|
48 |
# Entity types to identify
|
49 |
entity_types = st.sidebar.multiselect(
|
@@ -180,30 +171,17 @@ def perform_ner(text, entity_types):
|
|
180 |
|
181 |
return entities
|
182 |
|
183 |
-
# Function to
|
184 |
@st.cache_resource
|
185 |
def load_qa_model(model_name):
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
except Exception as e:
|
191 |
-
st.error(f"Error loading model: {str(e)}")
|
192 |
-
# If error, try with minimal requirements
|
193 |
-
try:
|
194 |
-
qa_pipeline = pipeline("question-answering", model=model_name)
|
195 |
-
return qa_pipeline
|
196 |
-
except Exception as e2:
|
197 |
-
st.error(f"Failed to load model: {str(e2)}")
|
198 |
-
return None
|
199 |
|
200 |
-
# Function to perform Question Answering with better error handling
|
201 |
def perform_qa(text, questions, qa_pipeline, confidence_threshold):
|
202 |
-
if qa_pipeline is None:
|
203 |
-
return [{"question": q, "answer": "Model loading failed", "confidence": 0, "context": ""} for q in questions]
|
204 |
-
|
205 |
# Split text into chunks if it's too long
|
206 |
-
max_length =
|
207 |
chunks = []
|
208 |
|
209 |
# Simple chunking by sentences
|
@@ -240,7 +218,7 @@ def perform_qa(text, questions, qa_pipeline, confidence_threshold):
|
|
240 |
"context": chunk[max(0, result["start"] - 100):min(len(chunk), result["end"] + 100)]
|
241 |
}
|
242 |
except Exception as e:
|
243 |
-
st.
|
244 |
continue
|
245 |
|
246 |
if best_answer["answer"]:
|
@@ -276,14 +254,9 @@ def get_download_link(data, filename, text):
|
|
276 |
uploaded_file = st.file_uploader("Upload SEC Filing (PDF)", type=["pdf"])
|
277 |
|
278 |
if uploaded_file:
|
279 |
-
# Save the uploaded file to the upload folder for better processing
|
280 |
-
file_path = os.path.join(UPLOAD_FOLDER, uploaded_file.name)
|
281 |
-
with open(file_path, "wb") as f:
|
282 |
-
f.write(uploaded_file.getbuffer())
|
283 |
-
|
284 |
with st.spinner("Processing PDF file..."):
|
285 |
# Extract text from PDF
|
286 |
-
full_text, text_by_page = extract_text_from_pdf(
|
287 |
|
288 |
# Show text extraction status
|
289 |
st.success(f"Successfully extracted text from {len(text_by_page)} pages")
|
@@ -346,47 +319,41 @@ if uploaded_file:
|
|
346 |
# Question Answering
|
347 |
with qa_tab:
|
348 |
if qa_mode:
|
349 |
-
with st.spinner("
|
350 |
try:
|
351 |
-
# Load the QA model
|
352 |
qa_pipeline = load_qa_model(nlp_model)
|
|
|
353 |
|
354 |
-
|
355 |
-
|
|
|
356 |
|
357 |
-
|
358 |
-
|
359 |
-
st.
|
360 |
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
"Download QA Results as CSV"
|
382 |
-
),
|
383 |
-
unsafe_allow_html=True
|
384 |
-
)
|
385 |
-
else:
|
386 |
-
st.error("Failed to load QA model. Check logs for details.")
|
387 |
except Exception as e:
|
388 |
st.error(f"Error performing question answering: {str(e)}")
|
389 |
-
st.info("If you're seeing model loading errors, ensure the Docker container has adequate memory and the model is properly downloaded.")
|
390 |
else:
|
391 |
st.info("Question Answering is disabled. Enable it from the sidebar.")
|
392 |
|
@@ -533,5 +500,4 @@ else:
|
|
533 |
st.markdown("Download structured analysis results for review by your legal and compliance teams.")
|
534 |
|
535 |
# Add footer with information
|
536 |
-
st.markdown("---")
|
537 |
-
st.markdown("Regulatory Report Checker - NLP-powered document analysis for compliance teams")
|
|
|
4 |
import re
|
5 |
import spacy
|
6 |
import torch
|
7 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, AutoModelForTokenClassification, pipeline
|
8 |
import base64
|
9 |
import io
|
10 |
from datetime import datetime
|
11 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Set page config
|
14 |
st.set_page_config(
|
|
|
30 |
# Sidebar for model selection and settings
|
31 |
st.sidebar.header("Analysis Settings")
|
32 |
|
33 |
+
# Model selection
|
34 |
+
nlp_model = st.sidebar.selectbox(
|
35 |
+
"Select NLP Model",
|
36 |
+
["distilbert-base-uncased", "deepset/deberta-v3-base-squad2", "distilbert-base-cased-distilled-squad"]
|
37 |
+
)
|
38 |
|
39 |
# Entity types to identify
|
40 |
entity_types = st.sidebar.multiselect(
|
|
|
171 |
|
172 |
return entities
|
173 |
|
174 |
+
# Function to perform Question Answering
|
175 |
@st.cache_resource
|
176 |
def load_qa_model(model_name):
|
177 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
178 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
179 |
+
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
|
180 |
+
return qa_pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
|
|
182 |
def perform_qa(text, questions, qa_pipeline, confidence_threshold):
|
|
|
|
|
|
|
183 |
# Split text into chunks if it's too long
|
184 |
+
max_length = 512 # Typical max length for transformer models
|
185 |
chunks = []
|
186 |
|
187 |
# Simple chunking by sentences
|
|
|
218 |
"context": chunk[max(0, result["start"] - 100):min(len(chunk), result["end"] + 100)]
|
219 |
}
|
220 |
except Exception as e:
|
221 |
+
st.error(f"Error processing chunk with question '{question}': {str(e)}")
|
222 |
continue
|
223 |
|
224 |
if best_answer["answer"]:
|
|
|
254 |
uploaded_file = st.file_uploader("Upload SEC Filing (PDF)", type=["pdf"])
|
255 |
|
256 |
if uploaded_file:
|
|
|
|
|
|
|
|
|
|
|
257 |
with st.spinner("Processing PDF file..."):
|
258 |
# Extract text from PDF
|
259 |
+
full_text, text_by_page = extract_text_from_pdf(uploaded_file)
|
260 |
|
261 |
# Show text extraction status
|
262 |
st.success(f"Successfully extracted text from {len(text_by_page)} pages")
|
|
|
319 |
# Question Answering
|
320 |
with qa_tab:
|
321 |
if qa_mode:
|
322 |
+
with st.spinner("Performing Question Answering..."):
|
323 |
try:
|
|
|
324 |
qa_pipeline = load_qa_model(nlp_model)
|
325 |
+
qa_results = perform_qa(full_text, custom_questions, qa_pipeline, confidence_threshold)
|
326 |
|
327 |
+
# Display QA results
|
328 |
+
for result in qa_results:
|
329 |
+
st.subheader(result["question"])
|
330 |
|
331 |
+
if result["confidence"] > 0:
|
332 |
+
st.markdown(f"**Answer:** {result['answer']}")
|
333 |
+
st.markdown(f"**Confidence:** {result['confidence']:.2f}")
|
334 |
|
335 |
+
with st.expander("Show Context"):
|
336 |
+
# Highlight the answer in the context
|
337 |
+
highlighted_context = result["context"].replace(
|
338 |
+
result["answer"],
|
339 |
+
f"**:blue[{result['answer']}]**"
|
340 |
+
)
|
341 |
+
st.markdown(highlighted_context)
|
342 |
+
else:
|
343 |
+
st.info("No answer found with sufficient confidence.")
|
344 |
+
|
345 |
+
# Provide download link for QA results
|
346 |
+
qa_df = pd.DataFrame(qa_results)
|
347 |
+
st.markdown(
|
348 |
+
get_download_link(
|
349 |
+
qa_df,
|
350 |
+
"qa_results.csv",
|
351 |
+
"Download QA Results as CSV"
|
352 |
+
),
|
353 |
+
unsafe_allow_html=True
|
354 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
except Exception as e:
|
356 |
st.error(f"Error performing question answering: {str(e)}")
|
|
|
357 |
else:
|
358 |
st.info("Question Answering is disabled. Enable it from the sidebar.")
|
359 |
|
|
|
500 |
st.markdown("Download structured analysis results for review by your legal and compliance teams.")
|
501 |
|
502 |
# Add footer with information
|
503 |
+
st.markdown("---")
|
|