import matplotlib.pyplot as plt import torch import matplotlib matplotlib.use('Agg') import gradio as gr from kornia.geometry.line import ParametrizedLine, fit_line def inference(point1, point2, point3, point4): std = 1.2 # standard deviation for the points num_points = 50 # total number of points # create a baseline p0 = torch.tensor([point1, point2], dtype=torch.float32) p1 = torch.tensor([point3, point4], dtype=torch.float32) l1 = ParametrizedLine.through(p0, p1) # sample some points and weights pts, w = [], [] for t in torch.linspace(-10, 10, num_points): p2 = l1.point_at(t) p2_noise = torch.rand_like(p2) * std p2 += p2_noise pts.append(p2) w.append(1 - p2_noise.mean()) pts = torch.stack(pts) w = torch.stack(w) if len(pts.shape) == 2: pts = pts.unsqueeze(0) if len(w.shape) == 1: w = w.unsqueeze(0) l2 = fit_line(pts, w) # project some points along the estimated line p3 = l2.point_at(torch.tensor(-10.0)) p4 = l2.point_at(torch.tensor(10.0)) X = torch.stack((p3, p4)).squeeze().detach().numpy() X_pts = pts.squeeze().detach().numpy() fig, ax = plt.subplots() ax.plot(X_pts[:, 0], X_pts[:, 1], 'ro') ax.plot(X[:, 0], X[:, 1]) ax.set_xlim(X_pts[:, 0].min() - 1, X_pts[:, 0].max() + 1) ax.set_ylim(X_pts[:, 1].min() - 1, X_pts[:, 1].max() + 1) return fig inputs = [ gr.Slider(0.0, 10.0, value=0.0, label="Point 1 X"), gr.Slider(0.0, 10.0, value=0.0, label="Point 1 Y"), gr.Slider(0.0, 10.0, value=10.0, label="Point 2 X"), gr.Slider(0.0, 10.0, value=10.0, label="Point 2 Y"), ] outputs = gr.Plot() examples = [ [0.0, 0.0, 10.0, 10.0], ] title = 'Line Fitting' demo = gr.Interface( fn=inference, inputs=inputs, outputs=outputs, title=title, cache_examples=True, theme='huggingface', live=True, examples=examples, ) demo.launch()