Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,33 +1,106 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
-
|
| 4 |
import spaces
|
| 5 |
import torch
|
| 6 |
import random
|
| 7 |
from PIL import Image
|
| 8 |
-
|
| 9 |
from kontext_pipeline import FluxKontextPipeline
|
| 10 |
from diffusers import FluxTransformer2DModel
|
| 11 |
from diffusers.utils import load_image
|
| 12 |
-
|
| 13 |
from huggingface_hub import hf_hub_download
|
| 14 |
|
| 15 |
-
|
| 16 |
kontext_path = hf_hub_download(repo_id="diffusers/kontext", filename="kontext.safetensors")
|
| 17 |
-
|
| 18 |
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
-
|
| 20 |
transformer = FluxTransformer2DModel.from_single_file(kontext_path, torch_dtype=torch.bfloat16)
|
| 21 |
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16).to("cuda")
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
@spaces.GPU
|
| 24 |
-
def infer(
|
| 25 |
|
| 26 |
if randomize_seed:
|
| 27 |
seed = random.randint(0, MAX_SEED)
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
# if original_width >= original_height:
|
| 33 |
# new_width = 1024
|
|
@@ -38,15 +111,17 @@ def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5
|
|
| 38 |
# new_width = int(original_width * (new_height / original_height))
|
| 39 |
# new_width = round(new_width / 64) * 64
|
| 40 |
|
| 41 |
-
#
|
|
|
|
| 42 |
image = pipe(
|
| 43 |
-
image=
|
| 44 |
prompt=prompt,
|
| 45 |
guidance_scale=guidance_scale,
|
| 46 |
# width=new_width,
|
| 47 |
# height=new_height,
|
| 48 |
generator=torch.Generator().manual_seed(seed),
|
| 49 |
).images[0]
|
|
|
|
| 50 |
return image, seed, gr.update(visible=True)
|
| 51 |
|
| 52 |
css="""
|
|
@@ -59,12 +134,24 @@ css="""
|
|
| 59 |
with gr.Blocks(css=css) as demo:
|
| 60 |
|
| 61 |
with gr.Column(elem_id="col-container"):
|
| 62 |
-
gr.Markdown(f"""# FLUX.1 Kontext [dev]
|
|
|
|
| 63 |
""")
|
| 64 |
-
|
| 65 |
with gr.Row():
|
| 66 |
with gr.Column():
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
with gr.Row():
|
| 69 |
prompt = gr.Text(
|
| 70 |
label="Prompt",
|
|
@@ -74,6 +161,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 74 |
container=False,
|
| 75 |
)
|
| 76 |
run_button = gr.Button("Run", scale=0)
|
|
|
|
| 77 |
with gr.Accordion("Advanced Settings", open=False):
|
| 78 |
|
| 79 |
seed = gr.Slider(
|
|
@@ -99,17 +187,17 @@ with gr.Blocks(css=css) as demo:
|
|
| 99 |
reuse_button = gr.Button("Reuse this image", visible=False)
|
| 100 |
|
| 101 |
|
| 102 |
-
|
| 103 |
gr.on(
|
| 104 |
triggers=[run_button.click, prompt.submit],
|
| 105 |
fn = infer,
|
| 106 |
-
inputs = [
|
| 107 |
outputs = [result, seed, reuse_button]
|
| 108 |
)
|
|
|
|
| 109 |
reuse_button.click(
|
| 110 |
-
fn = lambda image: image,
|
| 111 |
inputs = [result],
|
| 112 |
-
outputs = [
|
| 113 |
)
|
| 114 |
|
| 115 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
|
|
|
| 3 |
import spaces
|
| 4 |
import torch
|
| 5 |
import random
|
| 6 |
from PIL import Image
|
|
|
|
| 7 |
from kontext_pipeline import FluxKontextPipeline
|
| 8 |
from diffusers import FluxTransformer2DModel
|
| 9 |
from diffusers.utils import load_image
|
|
|
|
| 10 |
from huggingface_hub import hf_hub_download
|
| 11 |
|
|
|
|
| 12 |
kontext_path = hf_hub_download(repo_id="diffusers/kontext", filename="kontext.safetensors")
|
|
|
|
| 13 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 14 |
transformer = FluxTransformer2DModel.from_single_file(kontext_path, torch_dtype=torch.bfloat16)
|
| 15 |
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16).to("cuda")
|
| 16 |
|
| 17 |
+
def concatenate_images(images, direction="horizontal"):
|
| 18 |
+
"""
|
| 19 |
+
Concatenate multiple PIL images either horizontally or vertically.
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
images: List of PIL Images
|
| 23 |
+
direction: "horizontal" or "vertical"
|
| 24 |
+
|
| 25 |
+
Returns:
|
| 26 |
+
PIL Image: Concatenated image
|
| 27 |
+
"""
|
| 28 |
+
if not images:
|
| 29 |
+
return None
|
| 30 |
+
|
| 31 |
+
# Filter out None images
|
| 32 |
+
valid_images = [img for img in images if img is not None]
|
| 33 |
+
|
| 34 |
+
if not valid_images:
|
| 35 |
+
return None
|
| 36 |
+
|
| 37 |
+
if len(valid_images) == 1:
|
| 38 |
+
return valid_images[0].convert("RGB")
|
| 39 |
+
|
| 40 |
+
# Convert all images to RGB
|
| 41 |
+
valid_images = [img.convert("RGB") for img in valid_images]
|
| 42 |
+
|
| 43 |
+
if direction == "horizontal":
|
| 44 |
+
# Calculate total width and max height
|
| 45 |
+
total_width = sum(img.width for img in valid_images)
|
| 46 |
+
max_height = max(img.height for img in valid_images)
|
| 47 |
+
|
| 48 |
+
# Create new image
|
| 49 |
+
concatenated = Image.new('RGB', (total_width, max_height), (255, 255, 255))
|
| 50 |
+
|
| 51 |
+
# Paste images
|
| 52 |
+
x_offset = 0
|
| 53 |
+
for img in valid_images:
|
| 54 |
+
# Center image vertically if heights differ
|
| 55 |
+
y_offset = (max_height - img.height) // 2
|
| 56 |
+
concatenated.paste(img, (x_offset, y_offset))
|
| 57 |
+
x_offset += img.width
|
| 58 |
+
|
| 59 |
+
else: # vertical
|
| 60 |
+
# Calculate max width and total height
|
| 61 |
+
max_width = max(img.width for img in valid_images)
|
| 62 |
+
total_height = sum(img.height for img in valid_images)
|
| 63 |
+
|
| 64 |
+
# Create new image
|
| 65 |
+
concatenated = Image.new('RGB', (max_width, total_height), (255, 255, 255))
|
| 66 |
+
|
| 67 |
+
# Paste images
|
| 68 |
+
y_offset = 0
|
| 69 |
+
for img in valid_images:
|
| 70 |
+
# Center image horizontally if widths differ
|
| 71 |
+
x_offset = (max_width - img.width) // 2
|
| 72 |
+
concatenated.paste(img, (x_offset, y_offset))
|
| 73 |
+
y_offset += img.height
|
| 74 |
+
|
| 75 |
+
return concatenated
|
| 76 |
+
|
| 77 |
@spaces.GPU
|
| 78 |
+
def infer(input_images, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, progress=gr.Progress(track_tqdm=True)):
|
| 79 |
|
| 80 |
if randomize_seed:
|
| 81 |
seed = random.randint(0, MAX_SEED)
|
| 82 |
+
|
| 83 |
+
# Handle input_images - it could be a single image or a list of images
|
| 84 |
+
if input_images is None:
|
| 85 |
+
raise gr.Error("Please upload at least one image.")
|
| 86 |
+
|
| 87 |
+
# If it's a single image (not a list), convert to list
|
| 88 |
+
if not isinstance(input_images, list):
|
| 89 |
+
input_images = [input_images]
|
| 90 |
+
|
| 91 |
+
# Filter out None images
|
| 92 |
+
valid_images = [img for img in input_images if img is not None]
|
| 93 |
+
|
| 94 |
+
if not valid_images:
|
| 95 |
+
raise gr.Error("Please upload at least one valid image.")
|
| 96 |
+
|
| 97 |
+
# Concatenate images horizontally
|
| 98 |
+
concatenated_image = concatenate_images(valid_images, "horizontal")
|
| 99 |
+
|
| 100 |
+
if concatenated_image is None:
|
| 101 |
+
raise gr.Error("Failed to process the input images.")
|
| 102 |
+
|
| 103 |
+
# original_width, original_height = concatenated_image.size
|
| 104 |
|
| 105 |
# if original_width >= original_height:
|
| 106 |
# new_width = 1024
|
|
|
|
| 111 |
# new_width = int(original_width * (new_height / original_height))
|
| 112 |
# new_width = round(new_width / 64) * 64
|
| 113 |
|
| 114 |
+
#concatenated_image_resized = concatenated_image.resize((new_width, new_height), Image.LANCZOS)
|
| 115 |
+
|
| 116 |
image = pipe(
|
| 117 |
+
image=concatenated_image,
|
| 118 |
prompt=prompt,
|
| 119 |
guidance_scale=guidance_scale,
|
| 120 |
# width=new_width,
|
| 121 |
# height=new_height,
|
| 122 |
generator=torch.Generator().manual_seed(seed),
|
| 123 |
).images[0]
|
| 124 |
+
|
| 125 |
return image, seed, gr.update(visible=True)
|
| 126 |
|
| 127 |
css="""
|
|
|
|
| 134 |
with gr.Blocks(css=css) as demo:
|
| 135 |
|
| 136 |
with gr.Column(elem_id="col-container"):
|
| 137 |
+
gr.Markdown(f"""# FLUX.1 Kontext [dev] - Multi-Image
|
| 138 |
+
Upload one or multiple images.
|
| 139 |
""")
|
|
|
|
| 140 |
with gr.Row():
|
| 141 |
with gr.Column():
|
| 142 |
+
input_images = gr.Gallery(
|
| 143 |
+
label="Upload image(s) for editing",
|
| 144 |
+
show_label=True,
|
| 145 |
+
elem_id="gallery_input",
|
| 146 |
+
columns=3,
|
| 147 |
+
rows=2,
|
| 148 |
+
object_fit="contain",
|
| 149 |
+
height="auto",
|
| 150 |
+
type="pil"
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
|
| 155 |
with gr.Row():
|
| 156 |
prompt = gr.Text(
|
| 157 |
label="Prompt",
|
|
|
|
| 161 |
container=False,
|
| 162 |
)
|
| 163 |
run_button = gr.Button("Run", scale=0)
|
| 164 |
+
|
| 165 |
with gr.Accordion("Advanced Settings", open=False):
|
| 166 |
|
| 167 |
seed = gr.Slider(
|
|
|
|
| 187 |
reuse_button = gr.Button("Reuse this image", visible=False)
|
| 188 |
|
| 189 |
|
|
|
|
| 190 |
gr.on(
|
| 191 |
triggers=[run_button.click, prompt.submit],
|
| 192 |
fn = infer,
|
| 193 |
+
inputs = [input_images, prompt, seed, randomize_seed, guidance_scale],
|
| 194 |
outputs = [result, seed, reuse_button]
|
| 195 |
)
|
| 196 |
+
|
| 197 |
reuse_button.click(
|
| 198 |
+
fn = lambda image: [image] if image is not None else [], # Convert single image to list for gallery
|
| 199 |
inputs = [result],
|
| 200 |
+
outputs = [input_images]
|
| 201 |
)
|
| 202 |
|
| 203 |
demo.launch()
|