Spaces:
Running
Running
# app.py β Simplified for Hugging Face Spaces | |
# --------------------------------------------------------------- | |
# This version uses the high-level `pipeline` from transformers | |
# for a much simpler and cleaner implementation. | |
# --------------------------------------------------------------- | |
import os | |
import torch | |
import gradio as gr | |
from transformers import pipeline | |
# ββ Configuration ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# Set the model repository ID | |
MODEL_ID = "Reubencf/gemma3-goan-finetuned" | |
HF_TOKEN = os.getenv("HF_TOKEN") # Optional: for private models | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
TITLE = "π΄ Gemma Goan Q&A Bot" | |
DESCRIPTION = ( | |
"This is a simple Gradio chat interface for the Gemma model fine-tuned on a Goan Q&A dataset.\n" | |
"Ask about Goa, Konkani culture, or general topics!" | |
) | |
# ββ Load Model Pipeline βββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# We load the model and tokenizer into a pipeline object. | |
# This is done only once when the app starts. | |
# `device_map="auto"` ensures the model is placed on a GPU if available. | |
print(f"[Init] Loading model pipeline: {MODEL_ID} on {DEVICE}...") | |
try: | |
pipe = pipeline( | |
"text-generation", | |
model=MODEL_ID, | |
torch_dtype=torch.bfloat16, # Use bfloat16 for better performance | |
device_map="auto", | |
token=HF_TOKEN, | |
) | |
MODEL_LOADED = True | |
print("[Init] Model pipeline loaded successfully.") | |
except Exception as e: | |
MODEL_LOADED = False | |
DESCRIPTION = f"β Model failed to load: {e}" | |
print(f"[Fatal] Could not load model: {e}") | |
# ββ Generation Function ββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
def generate_response(message, history): | |
""" | |
This function is called for each user message. | |
It takes the user's message and the conversation history, | |
formats them for the model, and returns the model's response. | |
""" | |
if not MODEL_LOADED: | |
return "β οΈ Model is not available. Please check the Space logs for errors." | |
# Format the conversation history into the format expected by the model | |
# The model expects a list of dictionaries with "role" and "content" keys | |
conversation = [] | |
for user_msg, assistant_msg in history: | |
conversation.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
conversation.append({"role": "assistant", "content": assistant_msg}) | |
# Add the current user's message | |
conversation.append({"role": "user", "content": message}) | |
# Use the pipeline's tokenizer to apply the chat template | |
# This correctly formats the input for the conversational model | |
prompt = pipe.tokenizer.apply_chat_template( | |
conversation, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
# Generate the response using the pipeline | |
outputs = pipe( | |
prompt, | |
do_sample=True, | |
temperature=0.7, | |
top_k=50, | |
top_p=0.95 | |
) | |
# The pipeline output includes the entire conversation history (prompt). | |
# We need to extract only the newly generated text from the assistant. | |
response = outputs[0]["generated_text"] | |
# Slice the response to get only the new part | |
new_response = response[len(prompt):].strip() | |
return new_response | |
# ββ UI ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# Define some example questions to display in the UI | |
examples = [ | |
"What is bebinca?", | |
"Tell me about the history of Feni.", | |
"Suggest a good, quiet beach in South Goa.", | |
"Describe Goan fish curry.", | |
] | |
# Create the Gradio ChatInterface | |
demo = gr.ChatInterface( | |
fn=generate_response, | |
title=TITLE, | |
description=DESCRIPTION, | |
examples=examples, | |
theme="soft", | |
) | |
# ββ Launch ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
if __name__ == "__main__": | |
print("π Starting Gradio app...") | |
demo.launch() | |