Spaces:
Sleeping
Sleeping
File size: 39,962 Bytes
dbaa71b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 |
<p align="center">
<img src="https://raw.githubusercontent.com/obsei/obsei-resources/master/images/obsei-flyer.png" />
</p>
---
<p align="center">
<a href="https://www.oraika.com">
<img src="https://static.wixstatic.com/media/59bc4e_971f153f107e48c7912b9b2d4cd1b1a4~mv2.png/v1/fill/w_177,h_49,al_c,q_85,usm_0.66_1.00_0.01,enc_auto/3_edited.png" />
</a>
</p>
<p align="center">
<a href="https://github.com/obsei/obsei/actions">
<img alt="Test" src="https://github.com/obsei/obsei/workflows/CI/badge.svg?branch=master">
</a>
<a href="https://github.com/obsei/obsei/blob/master/LICENSE">
<img alt="License" src="https://img.shields.io/pypi/l/obsei">
</a>
<a href="https://pypi.org/project/obsei">
<img src="https://img.shields.io/pypi/pyversions/obsei" alt="PyPI - Python Version" />
</a>
<a href="https://pypi.org/project/obsei/">
<img alt="Release" src="https://img.shields.io/pypi/v/obsei">
</a>
<a href="https://pepy.tech/project/obsei">
<img src="https://pepy.tech/badge/obsei/month" alt="Downloads" />
</a>
<a href="https://huggingface.co/spaces/obsei/obsei-demo">
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue" alt="HF Spaces" />
</a>
<a href="https://github.com/obsei/obsei/commits/master">
<img alt="Last commit" src="https://img.shields.io/github/last-commit/obsei/obsei">
</a>
<a href="https://github.com/obsei/obsei">
<img alt="Github stars" src="https://img.shields.io/github/stars/obsei/obsei?style=social">
</a>
<a href="https://www.youtube.com/channel/UCqdvgro1BzU13tkAfX3jCJA">
<img alt="YouTube Channel Subscribers" src="https://img.shields.io/youtube/channel/subscribers/UCqdvgro1BzU13tkAfX3jCJA?style=social">
</a>
<a href="https://join.slack.com/t/obsei-community/shared_invite/zt-r0wnuz02-FAkAmhTAUoc6pD4SLB9Ikg">
<img src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/Slack_join.svg" height="30">
</a>
<a href="https://twitter.com/ObseiAI">
<img src="https://img.shields.io/twitter/follow/ObseiAI?style=social">
</a>
</p>
---

---
<span style="color:red">
<b>Note</b>: Obsei is still in alpha stage hence carefully use it in Production. Also, as it is constantly undergoing development hence master branch may contain many breaking changes. Please use released version.
</span>
---
**Obsei** (pronounced "Ob see" | /Ιb-'sΔ/) is an open-source, low-code, AI powered automation tool. _Obsei_ consists of -
- **Observer**: Collect unstructured data from various sources like tweets from Twitter, Subreddit comments on Reddit, page post's comments from Facebook, App Stores reviews, Google reviews, Amazon reviews, News, Website, etc.
- **Analyzer**: Analyze unstructured data collected with various AI tasks like classification, sentiment analysis, translation, PII, etc.
- **Informer**: Send analyzed data to various destinations like ticketing platforms, data storage, dataframe, etc so that the user can take further actions and perform analysis on the data.
All the Observers can store their state in databases (Sqlite, Postgres, MySQL, etc.), making Obsei suitable for scheduled jobs or serverless applications.

### Future direction -
- Text, Image, Audio, Documents and Video oriented workflows
- Collect data from every possible private and public channels
- Add every possible workflow to an AI downstream application to automate manual cognitive workflows
## Use cases
_Obsei_ use cases are following, but not limited to -
- Social listening: Listening about social media posts, comments, customer feedback, etc.
- Alerting/Notification: To get auto-alerts for events such as customer complaints, qualified sales leads, etc.
- Automatic customer issue creation based on customer complaints on Social Media, Email, etc.
- Automatic assignment of proper tags to tickets based content of customer complaint for example login issue, sign up issue, delivery issue, etc.
- Extraction of deeper insight from feedbacks on various platforms
- Market research
- Creation of dataset for various AI tasks
- Many more based on creativity π‘
## Installation
### Prerequisite
Install the following (if not present already) -
- Install [Python 3.7+](https://www.python.org/downloads/)
- Install [PIP](https://pip.pypa.io/en/stable/installing/)
### Install Obsei
You can install Obsei either via PIP or Conda based on your preference.
To install latest released version -
```shell
pip install obsei[all]
```
Install from master branch (if you want to try the latest features) -
```shell
git clone https://github.com/obsei/obsei.git
cd obsei
pip install --editable .[all]
```
Note: `all` option will install all the dependencies which might not be needed for your workflow, alternatively
following options are available to install minimal dependencies as per need -
- `pip install obsei[source]`: To install dependencies related to all observers
- `pip install obsei[sink]`: To install dependencies related to all informers
- `pip install obsei[analyzer]`: To install dependencies related to all analyzers, it will install pytorch as well
- `pip install obsei[twitter-api]`: To install dependencies related to Twitter observer
- `pip install obsei[google-play-scraper]`: To install dependencies related to Play Store review scrapper observer
- `pip install obsei[google-play-api]`: To install dependencies related to Google official play store review API based observer
- `pip install obsei[app-store-scraper]`: To install dependencies related to Apple App Store review scrapper observer
- `pip install obsei[reddit-scraper]`: To install dependencies related to Reddit post and comment scrapper observer
- `pip install obsei[reddit-api]`: To install dependencies related to Reddit official api based observer
- `pip install obsei[pandas]`: To install dependencies related to TSV/CSV/Pandas based observer and informer
- `pip install obsei[google-news-scraper]`: To install dependencies related to Google news scrapper observer
- `pip install obsei[facebook-api]`: To install dependencies related to Facebook official page post and comments api based observer
- `pip install obsei[atlassian-api]`: To install dependencies related to Jira official api based informer
- `pip install obsei[elasticsearch]`: To install dependencies related to elasticsearch informer
- `pip install obsei[slack-api]`:To install dependencies related to Slack official api based informer
You can also mix multiple dependencies together in single installation command. For example to install dependencies
Twitter observer, all analyzer, and Slack informer use following command -
```shell
pip install obsei[twitter-api, analyzer, slack-api]
```
## How to use
Expand the following steps and create a workflow -
<details><summary><b>Step 1: Configure Source/Observer</b></summary>
<table ><tbody ><tr></tr><tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/twitter.png" width="20" height="20"><b>Twitter</b></summary><hr>
```python
from obsei.source.twitter_source import TwitterCredentials, TwitterSource, TwitterSourceConfig
# initialize twitter source config
source_config = TwitterSourceConfig(
keywords=["issue"], # Keywords, @user or #hashtags
lookup_period="1h", # Lookup period from current time, format: `<number><d|h|m>` (day|hour|minute)
cred_info=TwitterCredentials(
# Enter your twitter consumer key and secret. Get it from https://developer.twitter.com/en/apply-for-access
consumer_key="<twitter_consumer_key>",
consumer_secret="<twitter_consumer_secret>",
bearer_token='<ENTER BEARER TOKEN>',
)
)
# initialize tweets retriever
source = TwitterSource()
```
</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/Youtube.png" width="20" height="20"><b>Youtube Scrapper</b></summary><hr>
```python
from obsei.source.youtube_scrapper import YoutubeScrapperSource, YoutubeScrapperConfig
# initialize Youtube source config
source_config = YoutubeScrapperConfig(
video_url="https://www.youtube.com/watch?v=uZfns0JIlFk", # Youtube video URL
fetch_replies=True, # Fetch replies to comments
max_comments=10, # Total number of comments and replies to fetch
lookup_period="1Y", # Lookup period from current time, format: `<number><d|h|m|M|Y>` (day|hour|minute|month|year)
)
# initialize Youtube comments retriever
source = YoutubeScrapperSource()
```
</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/facebook.png" width="20" height="20"><b>Facebook</b></summary><hr>
```python
from obsei.source.facebook_source import FacebookCredentials, FacebookSource, FacebookSourceConfig
# initialize facebook source config
source_config = FacebookSourceConfig(
page_id="110844591144719", # Facebook page id, for example this one for Obsei
lookup_period="1h", # Lookup period from current time, format: `<number><d|h|m>` (day|hour|minute)
cred_info=FacebookCredentials(
# Enter your facebook app_id, app_secret and long_term_token. Get it from https://developers.facebook.com/apps/
app_id="<facebook_app_id>",
app_secret="<facebook_app_secret>",
long_term_token="<facebook_long_term_token>",
)
)
# initialize facebook post comments retriever
source = FacebookSource()
```
</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/gmail.png" width="20" height="20"><b>Email</b></summary><hr>
```python
from obsei.source.email_source import EmailConfig, EmailCredInfo, EmailSource
# initialize email source config
source_config = EmailConfig(
# List of IMAP servers for most commonly used email providers
# https://www.systoolsgroup.com/imap/
# Also, if you're using a Gmail account then make sure you allow less secure apps on your account -
# https://myaccount.google.com/lesssecureapps?pli=1
# Also enable IMAP access -
# https://mail.google.com/mail/u/0/#settings/fwdandpop
imap_server="imap.gmail.com", # Enter IMAP server
cred_info=EmailCredInfo(
# Enter your email account username and password
username="<email_username>",
password="<email_password>"
),
lookup_period="1h" # Lookup period from current time, format: `<number><d|h|m>` (day|hour|minute)
)
# initialize email retriever
source = EmailSource()
```
</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/google_maps.png" width="20" height="20"><b>Google Maps Reviews Scrapper</b></summary><hr>
```python
from obsei.source.google_maps_reviews import OSGoogleMapsReviewsSource, OSGoogleMapsReviewsConfig
# initialize Outscrapper Maps review source config
source_config = OSGoogleMapsReviewsConfig(
# Collect API key from https://outscraper.com/
api_key="<Enter Your API Key>",
# Enter Google Maps link or place id
# For example below is for the "Taj Mahal"
queries=["https://www.google.co.in/maps/place/Taj+Mahal/@27.1751496,78.0399535,17z/data=!4m5!3m4!1s0x39747121d702ff6d:0xdd2ae4803f767dde!8m2!3d27.1751448!4d78.0421422"],
number_of_reviews=10,
)
# initialize Outscrapper Maps review retriever
source = OSGoogleMapsReviewsSource()
```
</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/appstore.png" width="20" height="20"><b>AppStore Reviews Scrapper</b></summary><hr>
```python
from obsei.source.appstore_scrapper import AppStoreScrapperConfig, AppStoreScrapperSource
# initialize app store source config
source_config = AppStoreScrapperConfig(
# Need two parameters app_id and country.
# `app_id` can be found at the end of the url of app in app store.
# For example - https://apps.apple.com/us/app/xcode/id497799835
# `310633997` is the app_id for xcode and `us` is country.
countries=["us"],
app_id="310633997",
lookup_period="1h" # Lookup period from current time, format: `<number><d|h|m>` (day|hour|minute)
)
# initialize app store reviews retriever
source = AppStoreScrapperSource()
```
</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/playstore.png" width="20" height="20"><b>Play Store Reviews Scrapper</b></summary><hr>
```python
from obsei.source.playstore_scrapper import PlayStoreScrapperConfig, PlayStoreScrapperSource
# initialize play store source config
source_config = PlayStoreScrapperConfig(
# Need two parameters package_name and country.
# `package_name` can be found at the end of the url of app in play store.
# For example - https://play.google.com/store/apps/details?id=com.google.android.gm&hl=en&gl=US
# `com.google.android.gm` is the package_name for xcode and `us` is country.
countries=["us"],
package_name="com.google.android.gm",
lookup_period="1h" # Lookup period from current time, format: `<number><d|h|m>` (day|hour|minute)
)
# initialize play store reviews retriever
source = PlayStoreScrapperSource()
```
</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/reddit.png" width="20" height="20"><b>Reddit</b></summary><hr>
```python
from obsei.source.reddit_source import RedditConfig, RedditSource, RedditCredInfo
# initialize reddit source config
source_config = RedditConfig(
subreddits=["wallstreetbets"], # List of subreddits
# Reddit account username and password
# You can also enter reddit client_id and client_secret or refresh_token
# Create credential at https://www.reddit.com/prefs/apps
# Also refer https://praw.readthedocs.io/en/latest/getting_started/authentication.html
# Currently Password Flow, Read Only Mode and Saved Refresh Token Mode are supported
cred_info=RedditCredInfo(
username="<reddit_username>",
password="<reddit_password>"
),
lookup_period="1h" # Lookup period from current time, format: `<number><d|h|m>` (day|hour|minute)
)
# initialize reddit retriever
source = RedditSource()
```
</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/reddit.png" width="20" height="20"><b>Reddit Scrapper</b></summary><hr>
<i>Note: Reddit heavily rate limit scrappers, hence use it to fetch small data during long period</i>
```python
from obsei.source.reddit_scrapper import RedditScrapperConfig, RedditScrapperSource
# initialize reddit scrapper source config
source_config = RedditScrapperConfig(
# Reddit subreddit, search etc rss url. For proper url refer following link -
# Refer https://www.reddit.com/r/pathogendavid/comments/tv8m9/pathogendavids_guide_to_rss_and_reddit/
url="https://www.reddit.com/r/wallstreetbets/comments/.rss?sort=new",
lookup_period="1h" # Lookup period from current time, format: `<number><d|h|m>` (day|hour|minute)
)
# initialize reddit retriever
source = RedditScrapperSource()
```
</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/googlenews.png" width="20" height="20"><b>Google News</b></summary><hr>
```python
from obsei.source.google_news_source import GoogleNewsConfig, GoogleNewsSource
# initialize Google News source config
source_config = GoogleNewsConfig(
query='bitcoin',
max_results=5,
# To fetch full article text enable `fetch_article` flag
# By default google news gives title and highlight
fetch_article=True,
# proxy='http://127.0.0.1:8080'
)
# initialize Google News retriever
source = GoogleNewsSource()
```
</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/webcrawler.png" width="20" height="20"><b>Web Crawler</b></summary><hr>
```python
from obsei.source.website_crawler_source import TrafilaturaCrawlerConfig, TrafilaturaCrawlerSource
# initialize website crawler source config
source_config = TrafilaturaCrawlerConfig(
urls=['https://obsei.github.io/obsei/']
)
# initialize website text retriever
source = TrafilaturaCrawlerSource()
```
</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/pandas.svg" width="20" height="20"><b>Pandas DataFrame</b></summary><hr>
```python
import pandas as pd
from obsei.source.pandas_source import PandasSource, PandasSourceConfig
# Initialize your Pandas DataFrame from your sources like csv, excel, sql etc
# In following example we are reading csv which have two columns title and text
csv_file = "https://raw.githubusercontent.com/deepset-ai/haystack/master/tutorials/small_generator_dataset.csv"
dataframe = pd.read_csv(csv_file)
# initialize pandas sink config
sink_config = PandasSourceConfig(
dataframe=dataframe,
include_columns=["score"],
text_columns=["name", "degree"],
)
# initialize pandas sink
sink = PandasSource()
```
</details>
</td>
</tr>
</tbody>
</table>
</details>
<details><summary><b>Step 2: Configure Analyzer</b></summary>
<i>Note: To run transformers in an offline mode, check [transformers offline mode](https://huggingface.co/transformers/installation.html#offline-mode).</i>
<p>Some analyzer support GPU and to utilize pass <b>device</b> parameter.
List of possible values of <b>device</b> parameter (default value <i>auto</i>):
<ol>
<li> <b>auto</b>: GPU (cuda:0) will be used if available otherwise CPU will be used
<li> <b>cpu</b>: CPU will be used
<li> <b>cuda:{id}</b> - GPU will be used with provided CUDA device id
</ol>
</p>
<table ><tbody ><tr></tr><tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/classification.png" width="20" height="20"><b>Text Classification</b></summary><hr>
Text classification: Classify text into user provided categories.
```python
from obsei.analyzer.classification_analyzer import ClassificationAnalyzerConfig, ZeroShotClassificationAnalyzer
# initialize classification analyzer config
# It can also detect sentiments if "positive" and "negative" labels are added.
analyzer_config=ClassificationAnalyzerConfig(
labels=["service", "delay", "performance"],
)
# initialize classification analyzer
# For supported models refer https://huggingface.co/models?filter=zero-shot-classification
text_analyzer = ZeroShotClassificationAnalyzer(
model_name_or_path="typeform/mobilebert-uncased-mnli",
device="auto"
)
```
</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/sentiment.png" width="20" height="20"><b>Sentiment Analyzer</b></summary><hr>
Sentiment Analyzer: Detect the sentiment of the text. Text classification can also perform sentiment analysis but if you don't want to use heavy-duty NLP model then use less resource hungry dictionary based Vader Sentiment detector.
```python
from obsei.analyzer.sentiment_analyzer import VaderSentimentAnalyzer
# Vader does not need any configuration settings
analyzer_config=None
# initialize vader sentiment analyzer
text_analyzer = VaderSentimentAnalyzer()
```
</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/ner.png" width="20" height="20"><b>NER Analyzer</b></summary><hr>
NER (Named-Entity Recognition) Analyzer: Extract information and classify named entities mentioned in text into pre-defined categories such as person names, organizations, locations, medical codes, time expressions, quantities, monetary values, percentages, etc
```python
from obsei.analyzer.ner_analyzer import NERAnalyzer
# NER analyzer does not need configuration settings
analyzer_config=None
# initialize ner analyzer
# For supported models refer https://huggingface.co/models?filter=token-classification
text_analyzer = NERAnalyzer(
model_name_or_path="elastic/distilbert-base-cased-finetuned-conll03-english",
device = "auto"
)
```
</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/translator.png" width="20" height="20"><b>Translator</b></summary><hr>
```python
from obsei.analyzer.translation_analyzer import TranslationAnalyzer
# Translator does not need analyzer config
analyzer_config = None
# initialize translator
# For supported models refer https://huggingface.co/models?pipeline_tag=translation
analyzer = TranslationAnalyzer(
model_name_or_path="Helsinki-NLP/opus-mt-hi-en",
device = "auto"
)
```
</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/pii.png" width="20" height="20"><b>PII Anonymizer</b></summary><hr>
```python
from obsei.analyzer.pii_analyzer import PresidioEngineConfig, PresidioModelConfig, \
PresidioPIIAnalyzer, PresidioPIIAnalyzerConfig
# initialize pii analyzer's config
analyzer_config = PresidioPIIAnalyzerConfig(
# Whether to return only pii analysis or anonymize text
analyze_only=False,
# Whether to return detail information about anonymization decision
return_decision_process=True
)
# initialize pii analyzer
analyzer = PresidioPIIAnalyzer(
engine_config=PresidioEngineConfig(
# spacy and stanza nlp engines are supported
# For more info refer
# https://microsoft.github.io/presidio/analyzer/developing_recognizers/#utilize-spacy-or-stanza
nlp_engine_name="spacy",
# Update desired spacy model and language
models=[PresidioModelConfig(model_name="en_core_web_lg", lang_code="en")]
)
)
```
</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/dummy.png" width="20" height="20"><b>Dummy Analyzer</b></summary><hr>
Dummy Analyzer: Does nothing. Its simply used for transforming the input (TextPayload) to output (TextPayload) and adding the user supplied dummy data.
```python
from obsei.analyzer.dummy_analyzer import DummyAnalyzer, DummyAnalyzerConfig
# initialize dummy analyzer's configuration settings
analyzer_config = DummyAnalyzerConfig()
# initialize dummy analyzer
analyzer = DummyAnalyzer()
```
</details>
</td>
</tr>
</tbody>
</table>
</details>
<details><summary><b>Step 3: Configure Sink/Informer</b></summary>
<table ><tbody ><tr></tr><tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/slack.svg" width="25" height="25"><b>Slack</b></summary><hr>
```python
from obsei.sink.slack_sink import SlackSink, SlackSinkConfig
# initialize slack sink config
sink_config = SlackSinkConfig(
# Provide slack bot/app token
# For more detail refer https://slack.com/intl/en-de/help/articles/215770388-Create-and-regenerate-API-tokens
slack_token="<Slack_app_token>",
# To get channel id refer https://stackoverflow.com/questions/40940327/what-is-the-simplest-way-to-find-a-slack-team-id-and-a-channel-id
channel_id="C01LRS6CT9Q"
)
# initialize slack sink
sink = SlackSink()
```
</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/zendesk.png" width="20" height="20"><b>Zendesk</b></summary><hr>
```python
from obsei.sink.zendesk_sink import ZendeskSink, ZendeskSinkConfig, ZendeskCredInfo
# initialize zendesk sink config
sink_config = ZendeskSinkConfig(
# provide zendesk domain
domain="zendesk.com",
# provide subdomain if you have one
subdomain=None,
# Enter zendesk user details
cred_info=ZendeskCredInfo(
email="<zendesk_user_email>",
password="<zendesk_password>"
)
)
# initialize zendesk sink
sink = ZendeskSink()
```
</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/jira.png" width="20" height="20"><b>Jira</b></summary><hr>
```python
from obsei.sink.jira_sink import JiraSink, JiraSinkConfig
# For testing purpose you can start jira server locally
# Refer https://developer.atlassian.com/server/framework/atlassian-sdk/atlas-run-standalone/
# initialize Jira sink config
sink_config = JiraSinkConfig(
url="http://localhost:2990/jira", # Jira server url
# Jira username & password for user who have permission to create issue
username="<username>",
password="<password>",
# Which type of issue to be created
# For more information refer https://support.atlassian.com/jira-cloud-administration/docs/what-are-issue-types/
issue_type={"name": "Task"},
# Under which project issue to be created
# For more information refer https://support.atlassian.com/jira-software-cloud/docs/what-is-a-jira-software-project/
project={"key": "CUS"},
)
# initialize Jira sink
sink = JiraSink()
```
</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/elastic.png" width="20" height="20"><b>ElasticSearch</b></summary><hr>
```python
from obsei.sink.elasticsearch_sink import ElasticSearchSink, ElasticSearchSinkConfig
# For testing purpose you can start Elasticsearch server locally via docker
# `docker run -d --name elasticsearch -p 9200:9200 -e "discovery.type=single-node" elasticsearch:8.5.0`
# initialize Elasticsearch sink config
sink_config = ElasticSearchSinkConfig(
# Elasticsearch server
hosts="http://localhost:9200",
# Index name, it will create if not exist
index_name="test",
)
# initialize Elasticsearch sink
sink = ElasticSearchSink()
```
</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/http_api.png" width="20" height="20"><b>Http</b></summary><hr>
```python
from obsei.sink.http_sink import HttpSink, HttpSinkConfig
# For testing purpose you can create mock http server via postman
# For more details refer https://learning.postman.com/docs/designing-and-developing-your-api/mocking-data/setting-up-mock/
# initialize http sink config (Currently only POST call is supported)
sink_config = HttpSinkConfig(
# provide http server url
url="https://localhost:8080/api/path",
# Here you can add headers you would like to pass with request
headers={
"Content-type": "application/json"
}
)
# To modify or converting the payload, create convertor class
# Refer obsei.sink.dailyget_sink.PayloadConvertor for example
# initialize http sink
sink = HttpSink()
```
</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/pandas.svg" width="20" height="20"><b>Pandas DataFrame</b></summary><hr>
```python
from pandas import DataFrame
from obsei.sink.pandas_sink import PandasSink, PandasSinkConfig
# initialize pandas sink config
sink_config = PandasSinkConfig(
dataframe=DataFrame()
)
# initialize pandas sink
sink = PandasSink()
```
</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/logger.png" width="20" height="20"><b>Logger</b></summary><hr>
This is useful for testing and dry running the pipeline.
```python
from obsei.sink.logger_sink import LoggerSink, LoggerSinkConfig
import logging
import sys
logger = logging.getLogger("Obsei")
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
# initialize logger sink config
sink_config = LoggerSinkConfig(
logger=logger,
level=logging.INFO
)
# initialize logger sink
sink = LoggerSink()
```
</details>
</td>
</tr>
</tbody>
</table>
</details>
<details><summary><b>Step 4: Join and create workflow</b></summary>
`source` will fetch data from the selected source, then feed it to the `analyzer` for processing, whose output we feed into a `sink` to get notified at that sink.
```python
# Uncomment if you want logger
# import logging
# import sys
# logger = logging.getLogger(__name__)
# logging.basicConfig(stream=sys.stdout, level=logging.INFO)
# This will fetch information from configured source ie twitter, app store etc
source_response_list = source.lookup(source_config)
# Uncomment if you want to log source response
# for idx, source_response in enumerate(source_response_list):
# logger.info(f"source_response#'{idx}'='{source_response.__dict__}'")
# This will execute analyzer (Sentiment, classification etc) on source data with provided analyzer_config
analyzer_response_list = text_analyzer.analyze_input(
source_response_list=source_response_list,
analyzer_config=analyzer_config
)
# Uncomment if you want to log analyzer response
# for idx, an_response in enumerate(analyzer_response_list):
# logger.info(f"analyzer_response#'{idx}'='{an_response.__dict__}'")
# Analyzer output added to segmented_data
# Uncomment to log it
# for idx, an_response in enumerate(analyzer_response_list):
# logger.info(f"analyzed_data#'{idx}'='{an_response.segmented_data.__dict__}'")
# This will send analyzed output to configure sink ie Slack, Zendesk etc
sink_response_list = sink.send_data(analyzer_response_list, sink_config)
# Uncomment if you want to log sink response
# for sink_response in sink_response_list:
# if sink_response is not None:
# logger.info(f"sink_response='{sink_response}'")
```
</details>
<details><summary><b>Step 5: Execute workflow</b></summary>
Copy the code snippets from <b>Steps 1 to 4</b> into a python file, for example <code>example.py</code> and execute the following command -
```shell
python example.py
```
</details>
## Demo
We have a minimal [streamlit](https://streamlit.io/) based UI that you can use to test Obsei.

### Watch UI demo video
[](https://www.youtube.com/watch?v=GTF-Hy96gvY)
Check demo at [](https://huggingface.co/spaces/obsei/obsei-demo)
(**Note**: Sometimes the Streamlit demo might not work due to rate limiting, use the docker image (locally) in such cases.)
To test locally, just run
```
docker run -d --name obesi-ui -p 8501:8501 obsei/obsei-ui-demo
# You can find the UI at http://localhost:8501
```
**To run Obsei workflow easily using GitHub Actions (no sign ups and cloud hosting required), refer to this [repo](https://github.com/obsei/demo-workflow-action)**.
## Companies/Projects using Obsei
Here are some companies/projects (alphabetical order) using Obsei. To add your company/project to the list, please raise a PR or contact us via [email]([email protected]).
- [Oraika](https://www.oraika.com): Contextually understand customer feedback
- [1Page](https://www.get1page.com/): Giving a better context in meetings and calls
- [Spacepulse](http://spacepulse.in/): The operating system for spaces
- [Superblog](https://superblog.ai/): A blazing fast alternative to WordPress and Medium
- [Zolve](https://zolve.com/): Creating a financial world beyond borders
- [Utilize](https://www.utilize.app/): No-code app builder for businesses with a deskless workforce
## Articles
<table>
<thead>
<tr class="header">
<th>Sr. No.</th>
<th>Title</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>
<a href="https://reenabapna.medium.com/ai-based-comparative-customer-feedback-analysis-using-deep-learning-models-def0dc77aaee">AI based Comparative Customer Feedback Analysis Using Obsei</a>
</td>
<td>
<a href="linkedin.com/in/reena-bapna-66a8691a">Reena Bapna</a>
</td>
</tr>
<tr>
<td>2</td>
<td>
<a href="https://medium.com/mlearning-ai/linkedin-app-user-feedback-analysis-9c9f98464daa">LinkedIn App - User Feedback Analysis</a>
</td>
<td>
<a href="http://www.linkedin.com/in/himanshusharmads">Himanshu Sharma</a>
</td>
</tr>
</tbody>
</table>
## Tutorials
<table>
<thead>
<tr class="header">
<th>Sr. No.</th>
<th>Workflow</th>
<th>Colab</th>
<th>Binder</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2">1</td>
<td colspan="3">Observe app reviews from Google play store, Analyze them by performing text classification and then Inform them on console via logger</td>
</tr>
<tr>
<td>PlayStore Reviews β Classification β Logger</td>
<td>
<a href="https://colab.research.google.com/github/obsei/obsei/blob/master/tutorials/01_PlayStore_Classification_Logger.ipynb">
<img alt="Colab" src="https://colab.research.google.com/assets/colab-badge.svg">
</a>
</td>
<td>
<a href="https://mybinder.org/v2/gh/obsei/obsei/HEAD?filepath=tutorials%2F01_PlayStore_Classification_Logger.ipynb">
<img alt="Colab" src="https://mybinder.org/badge_logo.svg">
</a>
</td>
</tr>
<tr>
<td rowspan="2">2</td>
<td colspan="3">Observe app reviews from Google play store, PreProcess text via various text cleaning functions, Analyze them by performing text classification, Inform them to Pandas DataFrame and store resultant CSV to Google Drive</td>
</tr>
<tr>
<td>PlayStore Reviews β PreProcessing β Classification β Pandas DataFrame β CSV in Google Drive</td>
<td>
<a href="https://colab.research.google.com/github/obsei/obsei/blob/master/tutorials/02_PlayStore_PreProc_Classification_Pandas.ipynb">
<img alt="Colab" src="https://colab.research.google.com/assets/colab-badge.svg">
</a>
</td>
<td>
<a href="https://mybinder.org/v2/gh/obsei/obsei/HEAD?filepath=tutorials%2F02_PlayStore_PreProc_Classification_Pandas.ipynb">
<img alt="Colab" src="https://mybinder.org/badge_logo.svg">
</a>
</td>
</tr>
<tr>
<td rowspan="2">3</td>
<td colspan="3">Observe app reviews from Apple app store, PreProcess text via various text cleaning function, Analyze them by performing text classification, Inform them to Pandas DataFrame and store resultant CSV to Google Drive</td>
</tr>
<tr>
<td>AppStore Reviews β PreProcessing β Classification β Pandas DataFrame β CSV in Google Drive</td>
<td>
<a href="https://colab.research.google.com/github/obsei/obsei/blob/master/tutorials/03_AppStore_PreProc_Classification_Pandas.ipynb">
<img alt="Colab" src="https://colab.research.google.com/assets/colab-badge.svg">
</a>
</td>
<td>
<a href="https://mybinder.org/v2/gh/obsei/obsei/HEAD?filepath=tutorials%2F03_AppStore_PreProc_Classification_Pandas.ipynb">
<img alt="Colab" src="https://mybinder.org/badge_logo.svg">
</a>
</td>
</tr>
<tr>
<td rowspan="2">4</td>
<td colspan="3">Observe news article from Google news, PreProcess text via various text cleaning function, Analyze them via performing text classification while splitting text in small chunks and later computing final inference using given formula</td>
</tr>
<tr>
<td>Google News β Text Cleaner β Text Splitter β Classification β Inference Aggregator</td>
<td>
<a href="https://colab.research.google.com/github/obsei/obsei/blob/master/tutorials/04_GoogleNews_Cleaner_Splitter_Classification_Aggregator.ipynb">
<img alt="Colab" src="https://colab.research.google.com/assets/colab-badge.svg">
</a>
</td>
<td>
<a href="https://mybinder.org/v2/gh/obsei/obsei/HEAD?filepath=tutorials%2F04_GoogleNews_Cleaner_Splitter_Classification_Aggregator.ipynb">
<img alt="Colab" src="https://mybinder.org/badge_logo.svg">
</a>
</td>
</tr>
</tbody>
</table>
<details><summary><b>π‘Tips: Handle large text classification via Obsei</b></summary>

</details>
## Documentation
For detailed installation instructions, usages and examples, refer to our [documentation](https://obsei.github.io/obsei/).
## Support and Release Matrix
<table>
<thead>
<tr class="header">
<th></th>
<th>Linux</th>
<th>Mac</th>
<th>Windows</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tests</td>
<td style="text-align:center">β
</td>
<td style="text-align:center">β
</td>
<td style="text-align:center">β
</td>
<td>Low Coverage as difficult to test 3rd party libs</td>
</tr>
<tr>
<td>PIP</td>
<td style="text-align:center">β
</td>
<td style="text-align:center">β
</td>
<td style="text-align:center">β
</td>
<td>Fully Supported</td>
</tr>
<tr>
<td>Conda</td>
<td style="text-align:center">β</td>
<td style="text-align:center">β</td>
<td style="text-align:center">β</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>
## Discussion forum
Discussion about _Obsei_ can be done at [community forum](https://github.com/obsei/obsei/discussions)
## Changelogs
Refer [releases](https://github.com/obsei/obsei/releases) for changelogs
## Security Issue
For any security issue please contact us via [email](mailto:[email protected])
## Stargazers over time
[](https://starchart.cc/obsei/obsei)
## Maintainers
This project is being maintained by [Oraika Technologies](https://www.oraika.com). [Lalit Pagaria](https://github.com/lalitpagaria) and [Girish Patel](https://github.com/GirishPatel) are maintainers of this project.
## License
- Copyright holder: [Oraika Technologies](https://www.oraika.com)
- Overall Apache 2.0 and you can read [License](https://github.com/obsei/obsei/blob/master/LICENSE) file.
- Multiple other secondary permissive or weak copyleft licenses (LGPL, MIT, BSD etc.) for third-party components refer [Attribution](https://github.com/obsei/obsei/blob/master/ATTRIBUTION.md).
- To make project more commercial friendly, we void third party components which have strong copyleft licenses (GPL, AGPL etc.) into the project.
## Attribution
This could not have been possible without these [open source softwares](https://github.com/obsei/obsei/blob/master/ATTRIBUTION.md).
## Contribution
First off, thank you for even considering contributing to this package, every contribution big or small is greatly appreciated.
Please refer our [Contribution Guideline](https://github.com/obsei/obsei/blob/master/CONTRIBUTING.md) and [Code of Conduct](https://github.com/obsei/obsei/blob/master/CODE_OF_CONDUCT.md).
Thanks so much to all our contributors
<a href="https://github.com/obsei/obsei/graphs/contributors">
<img src="https://contrib.rocks/image?repo=obsei/obsei" />
</a>
|