File size: 39,962 Bytes
dbaa71b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
<p align="center">
    <img src="https://raw.githubusercontent.com/obsei/obsei-resources/master/images/obsei-flyer.png" />
</p>

---
<p align="center">
    <a href="https://www.oraika.com">
            <img src="https://static.wixstatic.com/media/59bc4e_971f153f107e48c7912b9b2d4cd1b1a4~mv2.png/v1/fill/w_177,h_49,al_c,q_85,usm_0.66_1.00_0.01,enc_auto/3_edited.png" />
    </a>
</p>
<p align="center">
    <a href="https://github.com/obsei/obsei/actions">
        <img alt="Test" src="https://github.com/obsei/obsei/workflows/CI/badge.svg?branch=master">
    </a>
    <a href="https://github.com/obsei/obsei/blob/master/LICENSE">
        <img alt="License" src="https://img.shields.io/pypi/l/obsei">
    </a>
    <a href="https://pypi.org/project/obsei">
        <img src="https://img.shields.io/pypi/pyversions/obsei" alt="PyPI - Python Version" />
    </a>
    <a href="https://pypi.org/project/obsei/">
        <img alt="Release" src="https://img.shields.io/pypi/v/obsei">
    </a>
    <a href="https://pepy.tech/project/obsei">
        <img src="https://pepy.tech/badge/obsei/month" alt="Downloads" />
    </a>
    <a href="https://huggingface.co/spaces/obsei/obsei-demo">
        <img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue" alt="HF Spaces" />
    </a>
    <a href="https://github.com/obsei/obsei/commits/master">
        <img alt="Last commit" src="https://img.shields.io/github/last-commit/obsei/obsei">
    </a>
    <a href="https://github.com/obsei/obsei">
        <img alt="Github stars" src="https://img.shields.io/github/stars/obsei/obsei?style=social">
    </a>
    <a href="https://www.youtube.com/channel/UCqdvgro1BzU13tkAfX3jCJA">
        <img alt="YouTube Channel Subscribers" src="https://img.shields.io/youtube/channel/subscribers/UCqdvgro1BzU13tkAfX3jCJA?style=social">
    </a>
    <a href="https://join.slack.com/t/obsei-community/shared_invite/zt-r0wnuz02-FAkAmhTAUoc6pD4SLB9Ikg">
        <img src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/Slack_join.svg" height="30">
    </a>
    <a href="https://twitter.com/ObseiAI">
        <img src="https://img.shields.io/twitter/follow/ObseiAI?style=social">
    </a>
</p>

---

![](https://raw.githubusercontent.com/obsei/obsei-resources/master/gifs/obsei_flow.gif)

---

<span style="color:red">
<b>Note</b>: Obsei is still in alpha stage hence carefully use it in Production. Also, as it is constantly undergoing development hence master branch may contain many breaking changes. Please use released version.
</span>

---

**Obsei** (pronounced "Ob see" | /Ι™b-'sΔ“/) is an open-source, low-code, AI powered automation tool. _Obsei_ consists of -

- **Observer**: Collect unstructured data from various sources like tweets from Twitter, Subreddit comments on Reddit, page post's comments from Facebook, App Stores reviews, Google reviews, Amazon reviews, News, Website, etc.
- **Analyzer**: Analyze unstructured data collected with various AI tasks like classification, sentiment analysis, translation, PII, etc.
- **Informer**: Send analyzed data to various destinations like ticketing platforms, data storage, dataframe, etc so that the user can take further actions and perform analysis on the data.

All the Observers can store their state in databases (Sqlite, Postgres, MySQL, etc.), making Obsei suitable for scheduled jobs or serverless applications.

![Obsei diagram](https://raw.githubusercontent.com/obsei/obsei-resources/master/images/Obsei_diagram.png)

### Future direction -

- Text, Image, Audio, Documents and Video oriented workflows
- Collect data from every possible private and public channels
- Add every possible workflow to an AI downstream application to automate manual cognitive workflows

## Use cases

_Obsei_ use cases are following, but not limited to -

- Social listening: Listening about social media posts, comments, customer feedback, etc.
- Alerting/Notification: To get auto-alerts for events such as customer complaints, qualified sales leads, etc.
- Automatic customer issue creation based on customer complaints on Social Media, Email, etc.
- Automatic assignment of proper tags to tickets based content of customer complaint for example login issue, sign up issue, delivery issue, etc.
- Extraction of deeper insight from feedbacks on various platforms
- Market research
- Creation of dataset for various AI tasks
- Many more based on creativity πŸ’‘

## Installation

### Prerequisite

Install the following (if not present already) -

- Install [Python 3.7+](https://www.python.org/downloads/)
- Install [PIP](https://pip.pypa.io/en/stable/installing/)

### Install Obsei

You can install Obsei either via PIP or Conda based on your preference.
To install latest released version -

```shell
pip install obsei[all]
```

Install from master branch (if you want to try the latest features) -

```shell
git clone https://github.com/obsei/obsei.git
cd obsei
pip install --editable .[all]
```
  
Note: `all` option will install all the dependencies which might not be needed for your workflow, alternatively 
following options are available to install minimal dependencies as per need -
 - `pip install obsei[source]`: To install dependencies related to all observers
 - `pip install obsei[sink]`: To install dependencies related to all informers
 - `pip install obsei[analyzer]`:  To install dependencies related to all analyzers, it will install pytorch as well
 - `pip install obsei[twitter-api]`: To install dependencies related to Twitter observer
 - `pip install obsei[google-play-scraper]`: To install dependencies related to Play Store review scrapper observer
 - `pip install obsei[google-play-api]`: To install dependencies related to Google official play store review API based observer
 - `pip install obsei[app-store-scraper]`: To install dependencies related to Apple App Store review scrapper observer
 - `pip install obsei[reddit-scraper]`: To install dependencies related to Reddit post and comment scrapper observer
 - `pip install obsei[reddit-api]`: To install dependencies related to Reddit official api based observer
 - `pip install obsei[pandas]`: To install dependencies related to TSV/CSV/Pandas based observer and informer
 - `pip install obsei[google-news-scraper]`: To install dependencies related to Google news scrapper observer
 - `pip install obsei[facebook-api]`: To install dependencies related to Facebook official page post and comments api based observer
 - `pip install obsei[atlassian-api]`: To install dependencies related to Jira official api based informer
 - `pip install obsei[elasticsearch]`: To install dependencies related to elasticsearch informer
 - `pip install obsei[slack-api]`:To install dependencies related to Slack official api based informer

You can also mix multiple dependencies together in single installation command. For example to install dependencies 
Twitter observer, all analyzer, and Slack informer use following command -
```shell
pip install obsei[twitter-api, analyzer, slack-api]
```


## How to use

Expand the following steps and create a workflow -

<details><summary><b>Step 1: Configure Source/Observer</b></summary>

<table ><tbody ><tr></tr><tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/twitter.png" width="20" height="20"><b>Twitter</b></summary><hr>

```python
from obsei.source.twitter_source import TwitterCredentials, TwitterSource, TwitterSourceConfig

# initialize twitter source config
source_config = TwitterSourceConfig(
   keywords=["issue"], # Keywords, @user or #hashtags
   lookup_period="1h", # Lookup period from current time, format: `<number><d|h|m>` (day|hour|minute)
   cred_info=TwitterCredentials(
       # Enter your twitter consumer key and secret. Get it from https://developer.twitter.com/en/apply-for-access
       consumer_key="<twitter_consumer_key>",
       consumer_secret="<twitter_consumer_secret>",
       bearer_token='<ENTER BEARER TOKEN>',
   )
)

# initialize tweets retriever
source = TwitterSource()
```

</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/Youtube.png" width="20" height="20"><b>Youtube Scrapper</b></summary><hr>

```python
from obsei.source.youtube_scrapper import YoutubeScrapperSource, YoutubeScrapperConfig

# initialize Youtube source config
source_config = YoutubeScrapperConfig(
    video_url="https://www.youtube.com/watch?v=uZfns0JIlFk", # Youtube video URL
    fetch_replies=True, # Fetch replies to comments
    max_comments=10, # Total number of comments and replies to fetch
    lookup_period="1Y", # Lookup period from current time, format: `<number><d|h|m|M|Y>` (day|hour|minute|month|year)
)

# initialize Youtube comments retriever
source = YoutubeScrapperSource()
```

</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/facebook.png" width="20" height="20"><b>Facebook</b></summary><hr>

```python
from obsei.source.facebook_source import FacebookCredentials, FacebookSource, FacebookSourceConfig

# initialize facebook source config
source_config = FacebookSourceConfig(
   page_id="110844591144719", # Facebook page id, for example this one for Obsei
   lookup_period="1h", # Lookup period from current time, format: `<number><d|h|m>` (day|hour|minute)
   cred_info=FacebookCredentials(
       # Enter your facebook app_id, app_secret and long_term_token. Get it from https://developers.facebook.com/apps/
       app_id="<facebook_app_id>",
       app_secret="<facebook_app_secret>",
       long_term_token="<facebook_long_term_token>",
   )
)

# initialize facebook post comments retriever
source = FacebookSource()
```

</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/gmail.png" width="20" height="20"><b>Email</b></summary><hr>

```python
from obsei.source.email_source import EmailConfig, EmailCredInfo, EmailSource

# initialize email source config
source_config = EmailConfig(
   # List of IMAP servers for most commonly used email providers
   # https://www.systoolsgroup.com/imap/
   # Also, if you're using a Gmail account then make sure you allow less secure apps on your account -
   # https://myaccount.google.com/lesssecureapps?pli=1
   # Also enable IMAP access -
   # https://mail.google.com/mail/u/0/#settings/fwdandpop
   imap_server="imap.gmail.com", # Enter IMAP server
   cred_info=EmailCredInfo(
       # Enter your email account username and password
       username="<email_username>",
       password="<email_password>"
   ),
   lookup_period="1h" # Lookup period from current time, format: `<number><d|h|m>` (day|hour|minute)
)

# initialize email retriever
source = EmailSource()
```

</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/google_maps.png" width="20" height="20"><b>Google Maps Reviews Scrapper</b></summary><hr>

```python
from obsei.source.google_maps_reviews import OSGoogleMapsReviewsSource, OSGoogleMapsReviewsConfig

# initialize Outscrapper Maps review source config
source_config = OSGoogleMapsReviewsConfig(
   # Collect API key from https://outscraper.com/
   api_key="<Enter Your API Key>",
   # Enter Google Maps link or place id
   # For example below is for the "Taj Mahal"
   queries=["https://www.google.co.in/maps/place/Taj+Mahal/@27.1751496,78.0399535,17z/data=!4m5!3m4!1s0x39747121d702ff6d:0xdd2ae4803f767dde!8m2!3d27.1751448!4d78.0421422"],
   number_of_reviews=10,
)


# initialize Outscrapper Maps review retriever
source = OSGoogleMapsReviewsSource()
```

</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/appstore.png" width="20" height="20"><b>AppStore Reviews Scrapper</b></summary><hr>

```python
from obsei.source.appstore_scrapper import AppStoreScrapperConfig, AppStoreScrapperSource

# initialize app store source config
source_config = AppStoreScrapperConfig(
   # Need two parameters app_id and country.
   # `app_id` can be found at the end of the url of app in app store.
   # For example - https://apps.apple.com/us/app/xcode/id497799835
   # `310633997` is the app_id for xcode and `us` is country.
   countries=["us"],
   app_id="310633997",
   lookup_period="1h" # Lookup period from current time, format: `<number><d|h|m>` (day|hour|minute)
)


# initialize app store reviews retriever
source = AppStoreScrapperSource()
```

</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/playstore.png" width="20" height="20"><b>Play Store Reviews Scrapper</b></summary><hr>

```python
from obsei.source.playstore_scrapper import PlayStoreScrapperConfig, PlayStoreScrapperSource

# initialize play store source config
source_config = PlayStoreScrapperConfig(
   # Need two parameters package_name and country.
   # `package_name` can be found at the end of the url of app in play store.
   # For example - https://play.google.com/store/apps/details?id=com.google.android.gm&hl=en&gl=US
   # `com.google.android.gm` is the package_name for xcode and `us` is country.
   countries=["us"],
   package_name="com.google.android.gm",
   lookup_period="1h" # Lookup period from current time, format: `<number><d|h|m>` (day|hour|minute)
)

# initialize play store reviews retriever
source = PlayStoreScrapperSource()
```

</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/reddit.png" width="20" height="20"><b>Reddit</b></summary><hr>

```python
from obsei.source.reddit_source import RedditConfig, RedditSource, RedditCredInfo

# initialize reddit source config
source_config = RedditConfig(
   subreddits=["wallstreetbets"], # List of subreddits
   # Reddit account username and password
   # You can also enter reddit client_id and client_secret or refresh_token
   # Create credential at https://www.reddit.com/prefs/apps
   # Also refer https://praw.readthedocs.io/en/latest/getting_started/authentication.html
   # Currently Password Flow, Read Only Mode and Saved Refresh Token Mode are supported
   cred_info=RedditCredInfo(
       username="<reddit_username>",
       password="<reddit_password>"
   ),
   lookup_period="1h" # Lookup period from current time, format: `<number><d|h|m>` (day|hour|minute)
)

# initialize reddit retriever
source = RedditSource()
```

</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/reddit.png" width="20" height="20"><b>Reddit Scrapper</b></summary><hr>

<i>Note: Reddit heavily rate limit scrappers, hence use it to fetch small data during long period</i>

```python
from obsei.source.reddit_scrapper import RedditScrapperConfig, RedditScrapperSource

# initialize reddit scrapper source config
source_config = RedditScrapperConfig(
   # Reddit subreddit, search etc rss url. For proper url refer following link -
   # Refer https://www.reddit.com/r/pathogendavid/comments/tv8m9/pathogendavids_guide_to_rss_and_reddit/
   url="https://www.reddit.com/r/wallstreetbets/comments/.rss?sort=new",
   lookup_period="1h" # Lookup period from current time, format: `<number><d|h|m>` (day|hour|minute)
)

# initialize reddit retriever
source = RedditScrapperSource()
```

</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/googlenews.png" width="20" height="20"><b>Google News</b></summary><hr>

```python
from obsei.source.google_news_source import GoogleNewsConfig, GoogleNewsSource

# initialize Google News source config
source_config = GoogleNewsConfig(
   query='bitcoin',
   max_results=5,
   # To fetch full article text enable `fetch_article` flag
   # By default google news gives title and highlight
   fetch_article=True,
   # proxy='http://127.0.0.1:8080'
)

# initialize Google News retriever
source = GoogleNewsSource()
```

</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/webcrawler.png" width="20" height="20"><b>Web Crawler</b></summary><hr>

```python
from obsei.source.website_crawler_source import TrafilaturaCrawlerConfig, TrafilaturaCrawlerSource

# initialize website crawler source config
source_config = TrafilaturaCrawlerConfig(
   urls=['https://obsei.github.io/obsei/']
)

# initialize website text retriever
source = TrafilaturaCrawlerSource()
```

</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/pandas.svg" width="20" height="20"><b>Pandas DataFrame</b></summary><hr>

```python
import pandas as pd
from obsei.source.pandas_source import PandasSource, PandasSourceConfig

# Initialize your Pandas DataFrame from your sources like csv, excel, sql etc
# In following example we are reading csv which have two columns title and text
csv_file = "https://raw.githubusercontent.com/deepset-ai/haystack/master/tutorials/small_generator_dataset.csv"
dataframe = pd.read_csv(csv_file)

# initialize pandas sink config
sink_config = PandasSourceConfig(
   dataframe=dataframe,
   include_columns=["score"],
   text_columns=["name", "degree"],
)

# initialize pandas sink
sink = PandasSource()
```

</details>
</td>
</tr>
</tbody>
</table>

</details>

<details><summary><b>Step 2: Configure Analyzer</b></summary>

<i>Note: To run transformers in an offline mode, check [transformers offline mode](https://huggingface.co/transformers/installation.html#offline-mode).</i>

<p>Some analyzer support GPU and to utilize pass <b>device</b> parameter.
List of possible values of <b>device</b> parameter (default value <i>auto</i>):
<ol>
    <li> <b>auto</b>: GPU (cuda:0) will be used if available otherwise CPU will be used
    <li> <b>cpu</b>: CPU will be used
    <li> <b>cuda:{id}</b> - GPU will be used with provided CUDA device id
</ol>
</p>

<table ><tbody ><tr></tr><tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/classification.png" width="20" height="20"><b>Text Classification</b></summary><hr>

Text classification: Classify text into user provided categories.

```python
from obsei.analyzer.classification_analyzer import ClassificationAnalyzerConfig, ZeroShotClassificationAnalyzer

# initialize classification analyzer config
# It can also detect sentiments if "positive" and "negative" labels are added.
analyzer_config=ClassificationAnalyzerConfig(
   labels=["service", "delay", "performance"],
)

# initialize classification analyzer
# For supported models refer https://huggingface.co/models?filter=zero-shot-classification
text_analyzer = ZeroShotClassificationAnalyzer(
   model_name_or_path="typeform/mobilebert-uncased-mnli",
   device="auto"
)
```

</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/sentiment.png" width="20" height="20"><b>Sentiment Analyzer</b></summary><hr>

Sentiment Analyzer: Detect the sentiment of the text. Text classification can also perform sentiment analysis but if you don't want to use heavy-duty NLP model then use less resource hungry dictionary based Vader Sentiment detector.

```python
from obsei.analyzer.sentiment_analyzer import VaderSentimentAnalyzer

# Vader does not need any configuration settings
analyzer_config=None

# initialize vader sentiment analyzer
text_analyzer = VaderSentimentAnalyzer()
```

</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/ner.png" width="20" height="20"><b>NER Analyzer</b></summary><hr>

NER (Named-Entity Recognition) Analyzer: Extract information and classify named entities mentioned in text into pre-defined categories such as person names, organizations, locations, medical codes, time expressions, quantities, monetary values, percentages, etc

```python
from obsei.analyzer.ner_analyzer import NERAnalyzer

# NER analyzer does not need configuration settings
analyzer_config=None

# initialize ner analyzer
# For supported models refer https://huggingface.co/models?filter=token-classification
text_analyzer = NERAnalyzer(
   model_name_or_path="elastic/distilbert-base-cased-finetuned-conll03-english",
   device = "auto"
)
```

</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/translator.png" width="20" height="20"><b>Translator</b></summary><hr>

```python
from obsei.analyzer.translation_analyzer import TranslationAnalyzer

# Translator does not need analyzer config
analyzer_config = None

# initialize translator
# For supported models refer https://huggingface.co/models?pipeline_tag=translation
analyzer = TranslationAnalyzer(
   model_name_or_path="Helsinki-NLP/opus-mt-hi-en",
   device = "auto"
)
```

</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/pii.png" width="20" height="20"><b>PII Anonymizer</b></summary><hr>

```python
from obsei.analyzer.pii_analyzer import PresidioEngineConfig, PresidioModelConfig, \
   PresidioPIIAnalyzer, PresidioPIIAnalyzerConfig

# initialize pii analyzer's config
analyzer_config = PresidioPIIAnalyzerConfig(
   # Whether to return only pii analysis or anonymize text
   analyze_only=False,
   # Whether to return detail information about anonymization decision
   return_decision_process=True
)

# initialize pii analyzer
analyzer = PresidioPIIAnalyzer(
   engine_config=PresidioEngineConfig(
       # spacy and stanza nlp engines are supported
       # For more info refer
       # https://microsoft.github.io/presidio/analyzer/developing_recognizers/#utilize-spacy-or-stanza
       nlp_engine_name="spacy",
       # Update desired spacy model and language
       models=[PresidioModelConfig(model_name="en_core_web_lg", lang_code="en")]
   )
)
```

</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/dummy.png" width="20" height="20"><b>Dummy Analyzer</b></summary><hr>

Dummy Analyzer: Does nothing. Its simply used for transforming the input (TextPayload) to output (TextPayload) and adding the user supplied dummy data.

```python
from obsei.analyzer.dummy_analyzer import DummyAnalyzer, DummyAnalyzerConfig

# initialize dummy analyzer's configuration settings
analyzer_config = DummyAnalyzerConfig()

# initialize dummy analyzer
analyzer = DummyAnalyzer()
```

</details>
</td>
</tr>
</tbody>
</table>

</details>

<details><summary><b>Step 3: Configure Sink/Informer</b></summary>

<table ><tbody ><tr></tr><tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/slack.svg" width="25" height="25"><b>Slack</b></summary><hr>

```python
from obsei.sink.slack_sink import SlackSink, SlackSinkConfig

# initialize slack sink config
sink_config = SlackSinkConfig(
   # Provide slack bot/app token
   # For more detail refer https://slack.com/intl/en-de/help/articles/215770388-Create-and-regenerate-API-tokens
   slack_token="<Slack_app_token>",
   # To get channel id refer https://stackoverflow.com/questions/40940327/what-is-the-simplest-way-to-find-a-slack-team-id-and-a-channel-id
   channel_id="C01LRS6CT9Q"
)

# initialize slack sink
sink = SlackSink()
```

</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/zendesk.png" width="20" height="20"><b>Zendesk</b></summary><hr>

```python
from obsei.sink.zendesk_sink import ZendeskSink, ZendeskSinkConfig, ZendeskCredInfo

# initialize zendesk sink config
sink_config = ZendeskSinkConfig(
   # provide zendesk domain
   domain="zendesk.com",
   # provide subdomain if you have one
   subdomain=None,
   # Enter zendesk user details
   cred_info=ZendeskCredInfo(
       email="<zendesk_user_email>",
       password="<zendesk_password>"
   )
)

# initialize zendesk sink
sink = ZendeskSink()
```

</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/jira.png" width="20" height="20"><b>Jira</b></summary><hr>

```python
from obsei.sink.jira_sink import JiraSink, JiraSinkConfig

# For testing purpose you can start jira server locally
# Refer https://developer.atlassian.com/server/framework/atlassian-sdk/atlas-run-standalone/

# initialize Jira sink config
sink_config = JiraSinkConfig(
   url="http://localhost:2990/jira", # Jira server url
    # Jira username & password for user who have permission to create issue
   username="<username>",
   password="<password>",
   # Which type of issue to be created
   # For more information refer https://support.atlassian.com/jira-cloud-administration/docs/what-are-issue-types/
   issue_type={"name": "Task"},
   # Under which project issue to be created
   # For more information refer https://support.atlassian.com/jira-software-cloud/docs/what-is-a-jira-software-project/
   project={"key": "CUS"},
)

# initialize Jira sink
sink = JiraSink()
```

</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/elastic.png" width="20" height="20"><b>ElasticSearch</b></summary><hr>

```python
from obsei.sink.elasticsearch_sink import ElasticSearchSink, ElasticSearchSinkConfig

# For testing purpose you can start Elasticsearch server locally via docker
# `docker run -d --name elasticsearch -p 9200:9200 -e "discovery.type=single-node" elasticsearch:8.5.0`

# initialize Elasticsearch sink config
sink_config = ElasticSearchSinkConfig(
   # Elasticsearch server
   hosts="http://localhost:9200",
   # Index name, it will create if not exist
   index_name="test",
)

# initialize Elasticsearch sink
sink = ElasticSearchSink()
```

</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/http_api.png" width="20" height="20"><b>Http</b></summary><hr>

```python
from obsei.sink.http_sink import HttpSink, HttpSinkConfig

# For testing purpose you can create mock http server via postman
# For more details refer https://learning.postman.com/docs/designing-and-developing-your-api/mocking-data/setting-up-mock/

# initialize http sink config (Currently only POST call is supported)
sink_config = HttpSinkConfig(
   # provide http server url
   url="https://localhost:8080/api/path",
   # Here you can add headers you would like to pass with request
   headers={
       "Content-type": "application/json"
   }
)

# To modify or converting the payload, create convertor class
# Refer obsei.sink.dailyget_sink.PayloadConvertor for example

# initialize http sink
sink = HttpSink()
```

</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/pandas.svg" width="20" height="20"><b>Pandas DataFrame</b></summary><hr>

```python
from pandas import DataFrame
from obsei.sink.pandas_sink import PandasSink, PandasSinkConfig

# initialize pandas sink config
sink_config = PandasSinkConfig(
   dataframe=DataFrame()
)

# initialize pandas sink
sink = PandasSink()
```

</details>
</td>
</tr>
<tr>
<td><details ><summary><img style="vertical-align:middle;margin:2px 10px" src="https://raw.githubusercontent.com/obsei/obsei-resources/master/logos/logger.png" width="20" height="20"><b>Logger</b></summary><hr>

This is useful for testing and dry running the pipeline.

```python
from obsei.sink.logger_sink import LoggerSink, LoggerSinkConfig
import logging
import sys

logger = logging.getLogger("Obsei")
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

# initialize logger sink config
sink_config = LoggerSinkConfig(
   logger=logger,
   level=logging.INFO
)

# initialize logger sink
sink = LoggerSink()
```

</details>
</td>
</tr>
</tbody>
</table>

</details>

<details><summary><b>Step 4: Join and create workflow</b></summary>

`source` will fetch data from the selected source, then feed it to the `analyzer` for processing, whose output we feed into a `sink` to get notified at that sink.

```python
# Uncomment if you want logger
# import logging
# import sys
# logger = logging.getLogger(__name__)
# logging.basicConfig(stream=sys.stdout, level=logging.INFO)

# This will fetch information from configured source ie twitter, app store etc
source_response_list = source.lookup(source_config)

# Uncomment if you want to log source response
# for idx, source_response in enumerate(source_response_list):
#     logger.info(f"source_response#'{idx}'='{source_response.__dict__}'")

# This will execute analyzer (Sentiment, classification etc) on source data with provided analyzer_config
analyzer_response_list = text_analyzer.analyze_input(
    source_response_list=source_response_list,
    analyzer_config=analyzer_config
)

# Uncomment if you want to log analyzer response
# for idx, an_response in enumerate(analyzer_response_list):
#    logger.info(f"analyzer_response#'{idx}'='{an_response.__dict__}'")

# Analyzer output added to segmented_data
# Uncomment to log it
# for idx, an_response in enumerate(analyzer_response_list):
#    logger.info(f"analyzed_data#'{idx}'='{an_response.segmented_data.__dict__}'")

# This will send analyzed output to configure sink ie Slack, Zendesk etc
sink_response_list = sink.send_data(analyzer_response_list, sink_config)

# Uncomment if you want to log sink response
# for sink_response in sink_response_list:
#     if sink_response is not None:
#         logger.info(f"sink_response='{sink_response}'")
```

</details>

<details><summary><b>Step 5: Execute workflow</b></summary>
Copy the code snippets from <b>Steps 1 to 4</b> into a python file, for example <code>example.py</code> and execute the following command -

```shell
python example.py
```

</details>

## Demo

We have a minimal [streamlit](https://streamlit.io/) based UI that you can use to test Obsei.

![Screenshot](https://raw.githubusercontent.com/obsei/obsei-resources/master/images/obsei-ui-demo.png)

### Watch UI demo video

[![Introductory and demo video](https://img.youtube.com/vi/GTF-Hy96gvY/2.jpg)](https://www.youtube.com/watch?v=GTF-Hy96gvY)

Check demo at [![](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/obsei/obsei-demo)

(**Note**: Sometimes the Streamlit demo might not work due to rate limiting, use the docker image (locally) in such cases.)

To test locally, just run

```
docker run -d --name obesi-ui -p 8501:8501 obsei/obsei-ui-demo

# You can find the UI at http://localhost:8501
```

**To run Obsei workflow easily using GitHub Actions (no sign ups and cloud hosting required), refer to this [repo](https://github.com/obsei/demo-workflow-action)**.

## Companies/Projects using Obsei

Here are some companies/projects (alphabetical order) using Obsei. To add your company/project to the list, please raise a PR or contact us via [email]([email protected]).

- [Oraika](https://www.oraika.com): Contextually understand customer feedback
- [1Page](https://www.get1page.com/): Giving a better context in meetings and calls
- [Spacepulse](http://spacepulse.in/): The operating system for spaces
- [Superblog](https://superblog.ai/): A blazing fast alternative to WordPress and Medium
- [Zolve](https://zolve.com/): Creating a financial world beyond borders
- [Utilize](https://www.utilize.app/): No-code app builder for businesses with a deskless workforce

## Articles

<table>
<thead>
<tr class="header">
<th>Sr. No.</th>
<th>Title</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>
    <a href="https://reenabapna.medium.com/ai-based-comparative-customer-feedback-analysis-using-deep-learning-models-def0dc77aaee">AI based Comparative Customer Feedback Analysis Using Obsei</a>
</td>
<td>
    <a href="linkedin.com/in/reena-bapna-66a8691a">Reena Bapna</a>
</td>
</tr>
<tr>
<td>2</td>
<td>
    <a href="https://medium.com/mlearning-ai/linkedin-app-user-feedback-analysis-9c9f98464daa">LinkedIn App - User Feedback Analysis</a>
</td>
<td>
    <a href="http://www.linkedin.com/in/himanshusharmads">Himanshu Sharma</a>
</td>
</tr>
</tbody>
</table>

## Tutorials

<table>
<thead>
<tr class="header">
<th>Sr. No.</th>
<th>Workflow</th>
<th>Colab</th>
<th>Binder</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2">1</td>
<td colspan="3">Observe app reviews from Google play store, Analyze them by performing text classification and then Inform them on console via logger</td>
</tr>
<tr>
<td>PlayStore Reviews β†’ Classification β†’ Logger</td>
<td>
    <a href="https://colab.research.google.com/github/obsei/obsei/blob/master/tutorials/01_PlayStore_Classification_Logger.ipynb">
        <img alt="Colab" src="https://colab.research.google.com/assets/colab-badge.svg">
    </a>
</td>
<td>
    <a href="https://mybinder.org/v2/gh/obsei/obsei/HEAD?filepath=tutorials%2F01_PlayStore_Classification_Logger.ipynb">
        <img alt="Colab" src="https://mybinder.org/badge_logo.svg">
    </a>
</td>
</tr>
<tr>
<td rowspan="2">2</td>
<td colspan="3">Observe app reviews from Google play store, PreProcess text via various text cleaning functions, Analyze them by performing text classification, Inform them to Pandas DataFrame and store resultant CSV to Google Drive</td>
</tr>
<tr>
<td>PlayStore Reviews β†’ PreProcessing β†’ Classification β†’ Pandas DataFrame β†’ CSV in Google Drive</td>
<td>
    <a href="https://colab.research.google.com/github/obsei/obsei/blob/master/tutorials/02_PlayStore_PreProc_Classification_Pandas.ipynb">
        <img alt="Colab" src="https://colab.research.google.com/assets/colab-badge.svg">
    </a>
</td>
<td>
    <a href="https://mybinder.org/v2/gh/obsei/obsei/HEAD?filepath=tutorials%2F02_PlayStore_PreProc_Classification_Pandas.ipynb">
        <img alt="Colab" src="https://mybinder.org/badge_logo.svg">
    </a>
</td>
</tr>
<tr>
<td rowspan="2">3</td>
<td colspan="3">Observe app reviews from Apple app store, PreProcess text via various text cleaning function, Analyze them by performing text classification, Inform them to Pandas DataFrame and store resultant CSV to Google Drive</td>
</tr>
<tr>
<td>AppStore Reviews β†’ PreProcessing β†’ Classification β†’ Pandas DataFrame β†’ CSV in Google Drive</td>
<td>
    <a href="https://colab.research.google.com/github/obsei/obsei/blob/master/tutorials/03_AppStore_PreProc_Classification_Pandas.ipynb">
        <img alt="Colab" src="https://colab.research.google.com/assets/colab-badge.svg">
    </a>
</td>
<td>
    <a href="https://mybinder.org/v2/gh/obsei/obsei/HEAD?filepath=tutorials%2F03_AppStore_PreProc_Classification_Pandas.ipynb">
        <img alt="Colab" src="https://mybinder.org/badge_logo.svg">
    </a>
</td>
</tr>
<tr>
<td rowspan="2">4</td>
<td colspan="3">Observe news article from Google news, PreProcess text via various text cleaning function, Analyze them via performing text classification while splitting text in small chunks and later computing final inference using given formula</td>
</tr>
<tr>
<td>Google News β†’ Text Cleaner β†’ Text Splitter β†’ Classification β†’ Inference Aggregator</td>
<td>
    <a href="https://colab.research.google.com/github/obsei/obsei/blob/master/tutorials/04_GoogleNews_Cleaner_Splitter_Classification_Aggregator.ipynb">
        <img alt="Colab" src="https://colab.research.google.com/assets/colab-badge.svg">
    </a>
</td>
<td>
    <a href="https://mybinder.org/v2/gh/obsei/obsei/HEAD?filepath=tutorials%2F04_GoogleNews_Cleaner_Splitter_Classification_Aggregator.ipynb">
        <img alt="Colab" src="https://mybinder.org/badge_logo.svg">
    </a>
</td>
</tr>
</tbody>
</table>

<details><summary><b>πŸ’‘Tips: Handle large text classification via Obsei</b></summary>

![](https://raw.githubusercontent.com/obsei/obsei-resources/master/gifs/Long_Text_Classification.gif)

</details>

## Documentation

For detailed installation instructions, usages and examples, refer to our [documentation](https://obsei.github.io/obsei/).

## Support and Release Matrix

<table>
<thead>
<tr class="header">
<th></th>
<th>Linux</th>
<th>Mac</th>
<th>Windows</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tests</td>
<td style="text-align:center">βœ…</td>
<td style="text-align:center">βœ…</td>
<td style="text-align:center">βœ…</td>
<td>Low Coverage as difficult to test 3rd party libs</td>
</tr>
<tr>
<td>PIP</td>
<td style="text-align:center">βœ…</td>
<td style="text-align:center">βœ…</td>
<td style="text-align:center">βœ…</td>
<td>Fully Supported</td>
</tr>
<tr>
<td>Conda</td>
<td style="text-align:center">❌</td>
<td style="text-align:center">❌</td>
<td style="text-align:center">❌</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

## Discussion forum

Discussion about _Obsei_ can be done at [community forum](https://github.com/obsei/obsei/discussions)

## Changelogs

Refer [releases](https://github.com/obsei/obsei/releases) for changelogs

## Security Issue

For any security issue please contact us via [email](mailto:[email protected])

## Stargazers over time

[![Stargazers over time](https://starchart.cc/obsei/obsei.svg)](https://starchart.cc/obsei/obsei)

## Maintainers

This project is being maintained by [Oraika Technologies](https://www.oraika.com). [Lalit Pagaria](https://github.com/lalitpagaria) and [Girish Patel](https://github.com/GirishPatel) are maintainers of this project.

## License

- Copyright holder: [Oraika Technologies](https://www.oraika.com)
- Overall Apache 2.0 and you can read [License](https://github.com/obsei/obsei/blob/master/LICENSE) file.
- Multiple other secondary permissive or weak copyleft licenses (LGPL, MIT, BSD etc.) for third-party components refer [Attribution](https://github.com/obsei/obsei/blob/master/ATTRIBUTION.md).
- To make project more commercial friendly, we void third party components which have strong copyleft licenses (GPL, AGPL etc.) into the project.

## Attribution

This could not have been possible without these [open source softwares](https://github.com/obsei/obsei/blob/master/ATTRIBUTION.md).

## Contribution

First off, thank you for even considering contributing to this package, every contribution big or small is greatly appreciated.
Please refer our [Contribution Guideline](https://github.com/obsei/obsei/blob/master/CONTRIBUTING.md) and [Code of Conduct](https://github.com/obsei/obsei/blob/master/CODE_OF_CONDUCT.md).

Thanks so much to all our contributors

<a href="https://github.com/obsei/obsei/graphs/contributors">
  <img src="https://contrib.rocks/image?repo=obsei/obsei" />
</a>