Spaces:
Running
Running
kkruel8100
commited on
Commit
·
0c76a0d
1
Parent(s):
6ddce78
commit gradio app
Browse files- app.py +406 -0
- requirements.txt +9 -0
app.py
ADDED
|
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding: utf-8
|
| 3 |
+
|
| 4 |
+
# In[17]:
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
import pickle
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import numpy as np
|
| 10 |
+
import gradio as gr
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
from transformers import pipeline
|
| 13 |
+
from tensorflow.keras.models import load_model
|
| 14 |
+
import tensorflow as tf
|
| 15 |
+
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
| 16 |
+
from dotenv import load_dotenv
|
| 17 |
+
import openai
|
| 18 |
+
import os
|
| 19 |
+
from langchain.schema import HumanMessage, SystemMessage
|
| 20 |
+
from langchain_openai import ChatOpenAI
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# In[18]:
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# Set the model's file path
|
| 27 |
+
file_path = Path("models/model_adam_scaled.h5")
|
| 28 |
+
|
| 29 |
+
# Load the model to a new object
|
| 30 |
+
adam_5 = tf.keras.models.load_model(file_path)
|
| 31 |
+
|
| 32 |
+
# Load env variables
|
| 33 |
+
load_dotenv()
|
| 34 |
+
|
| 35 |
+
# Add your OpenAI API key here
|
| 36 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
| 37 |
+
|
| 38 |
+
print(f"OpenAI API Key Loaded: {openai_api_key is not None}")
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# Load the model and tokenizer for translation
|
| 42 |
+
model = MBartForConditionalGeneration.from_pretrained(
|
| 43 |
+
"facebook/mbart-large-50-many-to-many-mmt"
|
| 44 |
+
)
|
| 45 |
+
tokenizer = MBart50TokenizerFast.from_pretrained(
|
| 46 |
+
"facebook/mbart-large-50-many-to-many-mmt"
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# Set source language
|
| 50 |
+
tokenizer.src_lang = "en_XX"
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# In[22]:
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# Constants
|
| 57 |
+
# Language information MBart
|
| 58 |
+
language_info = [
|
| 59 |
+
"English (en_XX)",
|
| 60 |
+
"Arabic (ar_AR)",
|
| 61 |
+
"Czech (cs_CZ)",
|
| 62 |
+
"German (de_DE)",
|
| 63 |
+
"Spanish (es_XX)",
|
| 64 |
+
"Estonian (et_EE)",
|
| 65 |
+
"Finnish (fi_FI)",
|
| 66 |
+
"French (fr_XX)",
|
| 67 |
+
"Gujarati (gu_IN)",
|
| 68 |
+
"Hindi (hi_IN)",
|
| 69 |
+
"Italian (it_IT)",
|
| 70 |
+
"Japanese (ja_XX)",
|
| 71 |
+
"Kazakh (kk_KZ)",
|
| 72 |
+
"Korean (ko_KR)",
|
| 73 |
+
"Lithuanian (lt_LT)",
|
| 74 |
+
"Latvian (lv_LV)",
|
| 75 |
+
"Burmese (my_MM)",
|
| 76 |
+
"Nepali (ne_NP)",
|
| 77 |
+
"Dutch (nl_XX)",
|
| 78 |
+
"Romanian (ro_RO)",
|
| 79 |
+
"Russian (ru_RU)",
|
| 80 |
+
"Sinhala (si_LK)",
|
| 81 |
+
"Turkish (tr_TR)",
|
| 82 |
+
"Vietnamese (vi_VN)",
|
| 83 |
+
"Chinese (zh_CN)",
|
| 84 |
+
"Afrikaans (af_ZA)",
|
| 85 |
+
"Azerbaijani (az_AZ)",
|
| 86 |
+
"Bengali (bn_IN)",
|
| 87 |
+
"Persian (fa_IR)",
|
| 88 |
+
"Hebrew (he_IL)",
|
| 89 |
+
"Croatian (hr_HR)",
|
| 90 |
+
"Indonesian (id_ID)",
|
| 91 |
+
"Georgian (ka_GE)",
|
| 92 |
+
"Khmer (km_KH)",
|
| 93 |
+
"Macedonian (mk_MK)",
|
| 94 |
+
"Malayalam (ml_IN)",
|
| 95 |
+
"Mongolian (mn_MN)",
|
| 96 |
+
"Marathi (mr_IN)",
|
| 97 |
+
"Polish (pl_PL)",
|
| 98 |
+
"Pashto (ps_AF)",
|
| 99 |
+
"Portuguese (pt_XX)",
|
| 100 |
+
"Swedish (sv_SE)",
|
| 101 |
+
"Swahili (sw_KE)",
|
| 102 |
+
"Tamil (ta_IN)",
|
| 103 |
+
"Telugu (te_IN)",
|
| 104 |
+
"Thai (th_TH)",
|
| 105 |
+
"Tagalog (tl_XX)",
|
| 106 |
+
"Ukrainian (uk_UA)",
|
| 107 |
+
"Urdu (ur_PK)",
|
| 108 |
+
"Xhosa (xh_ZA)",
|
| 109 |
+
"Galician (gl_ES)",
|
| 110 |
+
"Slovene (sl_SI)",
|
| 111 |
+
]
|
| 112 |
+
|
| 113 |
+
# Convert the information into a dictionary
|
| 114 |
+
language_dict = {}
|
| 115 |
+
for info in language_info:
|
| 116 |
+
name, code = info.split(" (")
|
| 117 |
+
code = code[:-1]
|
| 118 |
+
language_dict[name] = code
|
| 119 |
+
|
| 120 |
+
# Get the language names for choices in the dropdown
|
| 121 |
+
languages = list(language_dict.keys())
|
| 122 |
+
first_language = languages[0]
|
| 123 |
+
sorted_languages = sorted(languages[1:])
|
| 124 |
+
sorted_languages.insert(0, first_language)
|
| 125 |
+
|
| 126 |
+
default_language = "English"
|
| 127 |
+
|
| 128 |
+
# Prediction responses
|
| 129 |
+
malignant_text = "Malignant. Please consult a doctor for further evaluation."
|
| 130 |
+
benign_text = "Benign. Please consult a doctor for further evaluation."
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
# In[23]:
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
# Create instance
|
| 137 |
+
llm = ChatOpenAI(
|
| 138 |
+
openai_api_key=openai_api_key, model_name="gpt-3.5-turbo", temperature=0
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
# In[24]:
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
# Method to get system and human messages for ChatOpenAI - Predictions
|
| 146 |
+
def get_prediction_messages(prediction_text):
|
| 147 |
+
# Create a HumanMessage object
|
| 148 |
+
human_message = HumanMessage(content=f"skin lesion that appears {prediction_text}")
|
| 149 |
+
|
| 150 |
+
# Get the system message
|
| 151 |
+
system_message = SystemMessage(
|
| 152 |
+
content="You are a medical professional chatting with a patient. You want to provide helpful information and give a preliminary assessment."
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
# Return the system message
|
| 156 |
+
return [system_message, human_message]
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
# In[25]:
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
# Method to get system and human messages for ChatOpenAI - Help
|
| 163 |
+
def get_chat_messages(chat_prompt):
|
| 164 |
+
# Create a HumanMessage object
|
| 165 |
+
human_message = HumanMessage(content=chat_prompt)
|
| 166 |
+
|
| 167 |
+
# Get the system message
|
| 168 |
+
system_message = SystemMessage(
|
| 169 |
+
content="You are a medical professional chatting with a patient. You want to provide helpful information."
|
| 170 |
+
)
|
| 171 |
+
# Return the system message
|
| 172 |
+
return [system_message, human_message]
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
# In[26]:
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
# Method to predict the image
|
| 179 |
+
def predict_image(language, img):
|
| 180 |
+
try:
|
| 181 |
+
try:
|
| 182 |
+
# Process the image
|
| 183 |
+
img = img.resize((224, 224))
|
| 184 |
+
img_array = np.array(img) / 255.0
|
| 185 |
+
img_array = np.expand_dims(img_array, axis=0)
|
| 186 |
+
except Exception as e:
|
| 187 |
+
print(f"Error: {e}")
|
| 188 |
+
return "There was an error processing the image. Please try again."
|
| 189 |
+
|
| 190 |
+
# Get prediction from model
|
| 191 |
+
prediction = adam_5.predict(img_array)
|
| 192 |
+
text_prediction = "Malignant" if prediction[0][0] > 0.5 else "Benign"
|
| 193 |
+
|
| 194 |
+
try:
|
| 195 |
+
# Get the system and human messages
|
| 196 |
+
messages = get_prediction_messages(text_prediction)
|
| 197 |
+
|
| 198 |
+
# Get the response from ChatOpenAI
|
| 199 |
+
result = llm(messages)
|
| 200 |
+
|
| 201 |
+
# Get the text prediction
|
| 202 |
+
text_prediction = (
|
| 203 |
+
f"Prediction: {text_prediction} Explanation: {result.content}"
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
except Exception as e:
|
| 207 |
+
print(f"Error: {e}")
|
| 208 |
+
print(f"Prediction: {text_prediction}")
|
| 209 |
+
text_prediction = (
|
| 210 |
+
malignant_text if text_prediction == "Malignant" else benign_text
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
# Get selected language code
|
| 214 |
+
selected_code = language_dict[language]
|
| 215 |
+
|
| 216 |
+
# Check if the target and source languages are the same
|
| 217 |
+
if selected_code == "en_XX":
|
| 218 |
+
return (
|
| 219 |
+
text_prediction,
|
| 220 |
+
gr.update(visible=False),
|
| 221 |
+
gr.update(visible=True),
|
| 222 |
+
gr.update(visible=True),
|
| 223 |
+
gr.update(visible=True),
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
try:
|
| 227 |
+
# Encode, generate tokens, decode the prediction
|
| 228 |
+
encoded_text = tokenizer(text_prediction, return_tensors="pt")
|
| 229 |
+
generated_tokens = model.generate(
|
| 230 |
+
**encoded_text,
|
| 231 |
+
forced_bos_token_id=tokenizer.lang_code_to_id[selected_code],
|
| 232 |
+
)
|
| 233 |
+
result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
| 234 |
+
|
| 235 |
+
# Return the result
|
| 236 |
+
return (
|
| 237 |
+
result[0],
|
| 238 |
+
gr.update(visible=False),
|
| 239 |
+
gr.update(visible=True),
|
| 240 |
+
gr.update(visible=True),
|
| 241 |
+
gr.update(visible=True),
|
| 242 |
+
)
|
| 243 |
+
except Exception as e:
|
| 244 |
+
print(f"Error: {e}")
|
| 245 |
+
return (
|
| 246 |
+
f"""There was an error processing the translation.
|
| 247 |
+
In English:
|
| 248 |
+
{text_prediction}
|
| 249 |
+
""",
|
| 250 |
+
gr.update(visible=False),
|
| 251 |
+
gr.update(visible=True),
|
| 252 |
+
gr.update(visible=True),
|
| 253 |
+
gr.update(visible=True),
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
except Exception as e:
|
| 257 |
+
print(f"Error: {e}")
|
| 258 |
+
return (
|
| 259 |
+
"There was an error processing the request. Please try again.",
|
| 260 |
+
gr.update(visible=True),
|
| 261 |
+
gr.update(visible=False),
|
| 262 |
+
gr.update(visible=False),
|
| 263 |
+
gr.update(visible=False),
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
# In[27]:
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
# Method for on submit
|
| 271 |
+
def on_submit(language, img):
|
| 272 |
+
print(f"Language: {language}")
|
| 273 |
+
if language is None or len(language) == 0:
|
| 274 |
+
language = default_language
|
| 275 |
+
if img is None:
|
| 276 |
+
return (
|
| 277 |
+
"No image uploaded. Please try again.",
|
| 278 |
+
gr.update(visible=True),
|
| 279 |
+
gr.update(visible=False),
|
| 280 |
+
gr.update(visible=False),
|
| 281 |
+
gr.update(visible=False),
|
| 282 |
+
)
|
| 283 |
+
return predict_image(language, img)
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
# In[28]:
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
# Method for on clear
|
| 290 |
+
def on_clear():
|
| 291 |
+
return (
|
| 292 |
+
gr.update(),
|
| 293 |
+
gr.update(),
|
| 294 |
+
gr.update(),
|
| 295 |
+
gr.update(visible=True),
|
| 296 |
+
gr.update(value=None, visible=False),
|
| 297 |
+
gr.update(value=None, visible=False),
|
| 298 |
+
gr.update(visible=False),
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
# In[29]:
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
# Method for on chat
|
| 306 |
+
def on_chat(language, chat_prompt):
|
| 307 |
+
try:
|
| 308 |
+
# Get the system and human messages
|
| 309 |
+
messages = get_chat_messages(chat_prompt)
|
| 310 |
+
# Get the response from ChatOpenAI
|
| 311 |
+
result = llm(messages)
|
| 312 |
+
# Get the text prediction
|
| 313 |
+
chat_response = result.content
|
| 314 |
+
|
| 315 |
+
except Exception as e:
|
| 316 |
+
print(f"Error: {e}")
|
| 317 |
+
return gr.update(
|
| 318 |
+
value="There was an error processing your question. Please try again.",
|
| 319 |
+
visible=True,
|
| 320 |
+
), gr.update(visible=False)
|
| 321 |
+
|
| 322 |
+
# Get selected language code
|
| 323 |
+
if language is None or len(language) == 0:
|
| 324 |
+
language = default_language
|
| 325 |
+
selected_code = language_dict[language]
|
| 326 |
+
# Check if the target and source languages are the same
|
| 327 |
+
if selected_code == "en_XX":
|
| 328 |
+
return gr.update(value=chat_response, visible=True), gr.update(visible=False)
|
| 329 |
+
|
| 330 |
+
try:
|
| 331 |
+
# Encode, generate tokens, decode the prediction
|
| 332 |
+
encoded_text = tokenizer(chat_response, return_tensors="pt")
|
| 333 |
+
generated_tokens = model.generate(
|
| 334 |
+
**encoded_text, forced_bos_token_id=tokenizer.lang_code_to_id[selected_code]
|
| 335 |
+
)
|
| 336 |
+
result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
| 337 |
+
|
| 338 |
+
# Return the result
|
| 339 |
+
return gr.update(value=result[0], visible=True), gr.update(visible=False)
|
| 340 |
+
except Exception as e:
|
| 341 |
+
print(f"Error: {e}")
|
| 342 |
+
return (
|
| 343 |
+
gr.update(
|
| 344 |
+
value=f"""There was an error processing the translation.
|
| 345 |
+
In English:
|
| 346 |
+
{chat_response}
|
| 347 |
+
""",
|
| 348 |
+
visible=True,
|
| 349 |
+
),
|
| 350 |
+
gr.update(visible=False),
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
# In[30]:
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
# Gradio app
|
| 358 |
+
|
| 359 |
+
with gr.Blocks(theme=gr.themes.Default(primary_hue="green")) as demo:
|
| 360 |
+
intro = gr.Markdown(
|
| 361 |
+
"""
|
| 362 |
+
# Welcome to Skin Lesion Image Classifier!
|
| 363 |
+
Select prediction language and upload image to start.
|
| 364 |
+
"""
|
| 365 |
+
)
|
| 366 |
+
language = gr.Dropdown(
|
| 367 |
+
label="Response Language - Default English", choices=sorted_languages
|
| 368 |
+
)
|
| 369 |
+
img = gr.Image(image_mode="RGB", type="pil")
|
| 370 |
+
output = gr.Textbox(label="Results", show_copy_button=True)
|
| 371 |
+
chat_prompt = gr.Textbox(
|
| 372 |
+
label="Do you have a question about the results or skin cancer?",
|
| 373 |
+
placeholder="Enter your question here...",
|
| 374 |
+
visible=False,
|
| 375 |
+
)
|
| 376 |
+
chat_response = gr.Textbox(
|
| 377 |
+
label="Chat Response", visible=False, show_copy_button=True
|
| 378 |
+
)
|
| 379 |
+
submit_btn = gr.Button("Submit", variant="primary", visible=True)
|
| 380 |
+
chat_btn = gr.Button("Submit Question", variant="primary", visible=False)
|
| 381 |
+
submit_btn.click(
|
| 382 |
+
fn=on_submit,
|
| 383 |
+
inputs=[language, img],
|
| 384 |
+
outputs=[output, submit_btn, chat_prompt, chat_btn, chat_response],
|
| 385 |
+
)
|
| 386 |
+
chat_btn.click(
|
| 387 |
+
fn=on_chat, inputs=[language, chat_prompt], outputs=[chat_response, chat_btn]
|
| 388 |
+
)
|
| 389 |
+
clear_btn = gr.ClearButton(
|
| 390 |
+
components=[language, img, output, chat_response], variant="stop"
|
| 391 |
+
)
|
| 392 |
+
clear_btn.click(
|
| 393 |
+
fn=on_clear,
|
| 394 |
+
outputs=[
|
| 395 |
+
language,
|
| 396 |
+
img,
|
| 397 |
+
output,
|
| 398 |
+
submit_btn,
|
| 399 |
+
chat_prompt,
|
| 400 |
+
chat_response,
|
| 401 |
+
chat_btn,
|
| 402 |
+
],
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
if __name__ == "__main__":
|
| 406 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==4.4.1
|
| 2 |
+
langchain==0.1.17
|
| 3 |
+
langchain-community==0.0.36
|
| 4 |
+
langchain-core==0.1.50
|
| 5 |
+
langchain-openai==0.1.6
|
| 6 |
+
langchain-text-splitters==0.0.1
|
| 7 |
+
python-dotenv==1.0.0
|
| 8 |
+
tensorflow==2.12.0
|
| 9 |
+
transformers==4.40.1
|