kiylu commited on
Commit
b128c76
1 Parent(s): ea6c2f6

add project files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
API_FLAGS.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # --infer
2
+ --api
3
+ --listen 0.0.0.0:8080 \
4
+ --llama-checkpoint-path "checkpoints/fish-speech-1.5" \
5
+ --decoder-checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth" \
6
+ --decoder-config-name firefly_gan_vq
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright 2024 Fish Audio
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -1,14 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
- title: Fish Audio T
3
- emoji: 🐨
4
- colorFrom: red
5
- colorTo: gray
6
- sdk: gradio
7
- sdk_version: 5.9.1
8
- app_file: app.py
9
- pinned: false
10
- license: unknown
11
- short_description: fish-audio测试
12
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+ <h1>Fish Speech</h1>
3
+
4
+ **English** | [简体中文](docs/README.zh.md) | [Portuguese](docs/README.pt-BR.md) | [日本語](docs/README.ja.md) | [한국어](docs/README.ko.md) <br>
5
+
6
+ <a href="https://www.producthunt.com/posts/fish-speech-1-4?embed=true&utm_source=badge-featured&utm_medium=badge&utm_souce=badge-fish&#0045;speech&#0045;1&#0045;4" target="_blank">
7
+ <img src="https://api.producthunt.com/widgets/embed-image/v1/featured.svg?post_id=488440&theme=light" alt="Fish&#0032;Speech&#0032;1&#0046;4 - Open&#0045;Source&#0032;Multilingual&#0032;Text&#0045;to&#0045;Speech&#0032;with&#0032;Voice&#0032;Cloning | Product Hunt" style="width: 250px; height: 54px;" width="250" height="54" />
8
+ </a>
9
+ <a href="https://trendshift.io/repositories/7014" target="_blank">
10
+ <img src="https://trendshift.io/api/badge/repositories/7014" alt="fishaudio%2Ffish-speech | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/>
11
+ </a>
12
+ <br>
13
+ </div>
14
+ <br>
15
+
16
+ <div align="center">
17
+ <img src="https://count.getloli.com/get/@fish-speech?theme=asoul" /><br>
18
+ </div>
19
+
20
+ <br>
21
+
22
+ <div align="center">
23
+ <a target="_blank" href="https://discord.gg/Es5qTB9BcN">
24
+ <img alt="Discord" src="https://img.shields.io/discord/1214047546020728892?color=%23738ADB&label=Discord&logo=discord&logoColor=white&style=flat-square"/>
25
+ </a>
26
+ <a target="_blank" href="https://hub.docker.com/r/fishaudio/fish-speech">
27
+ <img alt="Docker" src="https://img.shields.io/docker/pulls/fishaudio/fish-speech?style=flat-square&logo=docker"/>
28
+ </a>
29
+ <a target="_blank" href="https://huggingface.co/spaces/fishaudio/fish-speech-1">
30
+ <img alt="Huggingface" src="https://img.shields.io/badge/🤗%20-space%20demo-yellow"/>
31
+ </a>
32
+ <a target="_blank" href="https://pd.qq.com/s/bwxia254o">
33
+ <img alt="QQ Channel" src="https://img.shields.io/badge/QQ-blue?logo=tencentqq">
34
+ </a>
35
+ </div>
36
+
37
+ This codebase is released under Apache License and all model weights are released under CC-BY-NC-SA-4.0 License. Please refer to [LICENSE](LICENSE) for more details.
38
+
39
  ---
40
+ ## Fish Agent
41
+ We are very excited to announce that we have made our self-research agent demo open source, you can now try our agent demo online at [demo](https://fish.audio/demo/live) for instant English chat and English and Chinese chat locally by following the [docs](https://speech.fish.audio/start_agent/).
42
+
43
+ You should mention that the content is released under a **CC BY-NC-SA 4.0 licence**. And the demo is an early alpha test version, the inference speed needs to be optimised, and there are a lot of bugs waiting to be fixed. If you've found a bug or want to fix it, we'd be very happy to receive an issue or a pull request.
44
+
45
+ ## Features
46
+ ### Fish Speech
47
+
48
+ 1. **Zero-shot & Few-shot TTS:** Input a 10 to 30-second vocal sample to generate high-quality TTS output. **For detailed guidelines, see [Voice Cloning Best Practices](https://docs.fish.audio/text-to-speech/voice-clone-best-practices).**
49
+
50
+ 2. **Multilingual & Cross-lingual Support:** Simply copy and paste multilingual text into the input box—no need to worry about the language. Currently supports English, Japanese, Korean, Chinese, French, German, Arabic, and Spanish.
51
+
52
+ 3. **No Phoneme Dependency:** The model has strong generalization capabilities and does not rely on phonemes for TTS. It can handle text in any language script.
53
+
54
+ 4. **Highly Accurate:** Achieves a low CER (Character Error Rate) and WER (Word Error Rate) of around 2% for 5-minute English texts.
55
+
56
+ 5. **Fast:** With fish-tech acceleration, the real-time factor is approximately 1:5 on an Nvidia RTX 4060 laptop and 1:15 on an Nvidia RTX 4090.
57
+
58
+ 6. **WebUI Inference:** Features an easy-to-use, Gradio-based web UI compatible with Chrome, Firefox, Edge, and other browsers.
59
+
60
+ 7. **GUI Inference:** Offers a PyQt6 graphical interface that works seamlessly with the API server. Supports Linux, Windows, and macOS. [See GUI](https://github.com/AnyaCoder/fish-speech-gui).
61
+
62
+ 8. **Deploy-Friendly:** Easily set up an inference server with native support for Linux, Windows and MacOS, minimizing speed loss.
63
+
64
+ ### Fish Agent
65
+ 1. **Completely End to End:** Automatically integrates ASR and TTS parts, no need to plug-in other models, i.e., true end-to-end, not three-stage (ASR+LLM+TTS).
66
+
67
+ 2. **Timbre Control:** Can use reference audio to control the speech timbre.
68
+
69
+ 3. **Emotional:** The model can generate speech with strong emotion.
70
+
71
+ ## Disclaimer
72
+
73
+ We do not hold any responsibility for any illegal usage of the codebase. Please refer to your local laws about DMCA and other related laws.
74
+
75
+ ## Online Demo
76
+
77
+ [Fish Audio](https://fish.audio)
78
+
79
+ [Fish Agent](https://fish.audio/demo/live)
80
+
81
+ ## Quick Start for Local Inference
82
+
83
+ [inference.ipynb](/inference.ipynb)
84
+
85
+ ## Videos
86
+
87
+ #### V1.4 Demo Video: [Youtube](https://www.youtube.com/watch?v=Ghc8cJdQyKQ)
88
+
89
+ ## Documents
90
+
91
+ - [English](https://speech.fish.audio/)
92
+ - [中文](https://speech.fish.audio/zh/)
93
+ - [日本語](https://speech.fish.audio/ja/)
94
+ - [Portuguese (Brazil)](https://speech.fish.audio/pt/)
95
+
96
+ ## Samples (2024/10/02 V1.4)
97
+
98
+ - [English](https://speech.fish.audio/samples/)
99
+ - [中文](https://speech.fish.audio/zh/samples/)
100
+ - [日本語](https://speech.fish.audio/ja/samples/)
101
+ - [Portuguese (Brazil)](https://speech.fish.audio/pt/samples/)
102
+
103
+ ## Credits
104
+
105
+ - [VITS2 (daniilrobnikov)](https://github.com/daniilrobnikov/vits2)
106
+ - [Bert-VITS2](https://github.com/fishaudio/Bert-VITS2)
107
+ - [GPT VITS](https://github.com/innnky/gpt-vits)
108
+ - [MQTTS](https://github.com/b04901014/MQTTS)
109
+ - [GPT Fast](https://github.com/pytorch-labs/gpt-fast)
110
+ - [GPT-SoVITS](https://github.com/RVC-Boss/GPT-SoVITS)
111
+
112
+ ## Tech Report (V1.4)
113
+ ```bibtex
114
+ @misc{fish-speech-v1.4,
115
+ title={Fish-Speech: Leveraging Large Language Models for Advanced Multilingual Text-to-Speech Synthesis},
116
+ author={Shijia Liao and Yuxuan Wang and Tianyu Li and Yifan Cheng and Ruoyi Zhang and Rongzhi Zhou and Yijin Xing},
117
+ year={2024},
118
+ eprint={2411.01156},
119
+ archivePrefix={arXiv},
120
+ primaryClass={cs.SD},
121
+ url={https://arxiv.org/abs/2411.01156},
122
+ }
123
+ ```
124
+
125
+ ## Sponsor
126
 
127
+ <div>
128
+ <a href="https://6block.com/">
129
+ <img src="https://avatars.githubusercontent.com/u/60573493" width="100" height="100" alt="6Block Avatar"/>
130
+ </a>
131
+ <br>
132
+ <a href="https://6block.com/">Data Processing sponsor by 6Block</a>
133
+ </div>
134
+ <div>
135
+ <a href="https://www.lepton.ai/">
136
+ <img src="https://www.lepton.ai/favicons/apple-touch-icon.png" width="100" height="100" alt="Lepton Avatar"/>
137
+ </a>
138
+ <br>
139
+ <a href="https://www.lepton.ai/">Fish Audio is served on Lepton.AI</a>
140
+ </div>
app.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from argparse import ArgumentParser
3
+ from pathlib import Path
4
+
5
+ import pyrootutils
6
+ import torch
7
+ from loguru import logger
8
+
9
+ pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)
10
+
11
+ from tools.inference_engine import TTSInferenceEngine
12
+ from tools.llama.generate import launch_thread_safe_queue
13
+ from tools.schema import ServeTTSRequest
14
+ from tools.vqgan.inference import load_model as load_decoder_model
15
+ from tools.webui import build_app
16
+ from tools.webui.inference import get_inference_wrapper
17
+
18
+ # Make einx happy
19
+ os.environ["EINX_FILTER_TRACEBACK"] = "false"
20
+
21
+
22
+ def parse_args():
23
+ parser = ArgumentParser()
24
+ parser.add_argument(
25
+ "--llama-checkpoint-path",
26
+ type=Path,
27
+ default="checkpoints/fish-speech-1.5",
28
+ )
29
+ parser.add_argument(
30
+ "--decoder-checkpoint-path",
31
+ type=Path,
32
+ default="checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth",
33
+ )
34
+ parser.add_argument("--decoder-config-name", type=str, default="firefly_gan_vq")
35
+ parser.add_argument("--device", type=str, default="cuda")
36
+ parser.add_argument("--half", action="store_true")
37
+ parser.add_argument("--compile", action="store_true")
38
+ parser.add_argument("--max-gradio-length", type=int, default=0)
39
+ parser.add_argument("--theme", type=str, default="light")
40
+
41
+ return parser.parse_args()
42
+
43
+
44
+ if __name__ == "__main__":
45
+ args = parse_args()
46
+ args.precision = torch.half if args.half else torch.bfloat16
47
+
48
+ # Check if MPS or CUDA is available
49
+ if torch.backends.mps.is_available():
50
+ args.device = "mps"
51
+ logger.info("mps is available, running on mps.")
52
+ elif not torch.cuda.is_available():
53
+ logger.info("CUDA is not available, running on CPU.")
54
+ args.device = "cpu"
55
+
56
+ logger.info("Loading Llama model...")
57
+ llama_queue = launch_thread_safe_queue(
58
+ checkpoint_path=args.llama_checkpoint_path,
59
+ device=args.device,
60
+ precision=args.precision,
61
+ compile=args.compile,
62
+ )
63
+
64
+ logger.info("Loading VQ-GAN model...")
65
+ decoder_model = load_decoder_model(
66
+ config_name=args.decoder_config_name,
67
+ checkpoint_path=args.decoder_checkpoint_path,
68
+ device=args.device,
69
+ )
70
+
71
+ logger.info("Decoder model loaded, warming up...")
72
+
73
+ # Create the inference engine
74
+ inference_engine = TTSInferenceEngine(
75
+ llama_queue=llama_queue,
76
+ decoder_model=decoder_model,
77
+ compile=args.compile,
78
+ precision=args.precision,
79
+ )
80
+
81
+ # Dry run to check if the model is loaded correctly and avoid the first-time latency
82
+ list(
83
+ inference_engine.inference(
84
+ ServeTTSRequest(
85
+ text="Hello world.",
86
+ references=[],
87
+ reference_id=None,
88
+ max_new_tokens=1024,
89
+ chunk_length=200,
90
+ top_p=0.7,
91
+ repetition_penalty=1.5,
92
+ temperature=0.7,
93
+ format="wav",
94
+ )
95
+ )
96
+ )
97
+
98
+ logger.info("Warming up done, launching the web UI...")
99
+
100
+ # Get the inference function with the immutable arguments
101
+ inference_fct = get_inference_wrapper(inference_engine)
102
+
103
+ app = build_app(inference_fct, args.theme)
104
+ app.launch(show_api=True, share=True)
docker-compose.dev.yml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ version: '3.8'
2
+
3
+ services:
4
+ fish-speech:
5
+ build:
6
+ context: .
7
+ dockerfile: dockerfile.dev
8
+ container_name: fish-speech
9
+ volumes:
10
+ - ./:/exp
11
+ deploy:
12
+ resources:
13
+ reservations:
14
+ devices:
15
+ - driver: nvidia
16
+ count: all
17
+ capabilities: [gpu]
18
+ command: tail -f /dev/null
dockerfile ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.12-slim-bookworm AS stage-1
2
+ ARG TARGETARCH
3
+
4
+ ARG HUGGINGFACE_MODEL=fish-speech-1.5
5
+ ARG HF_ENDPOINT=https://huggingface.co
6
+
7
+ WORKDIR /opt/fish-speech
8
+
9
+ RUN set -ex \
10
+ && pip install huggingface_hub \
11
+ && HF_ENDPOINT=${HF_ENDPOINT} huggingface-cli download --resume-download fishaudio/${HUGGINGFACE_MODEL} --local-dir checkpoints/${HUGGINGFACE_MODEL}
12
+
13
+ FROM python:3.12-slim-bookworm
14
+ ARG TARGETARCH
15
+
16
+ ARG DEPENDENCIES=" \
17
+ ca-certificates \
18
+ libsox-dev \
19
+ build-essential \
20
+ cmake \
21
+ libasound-dev \
22
+ portaudio19-dev \
23
+ libportaudio2 \
24
+ libportaudiocpp0 \
25
+ ffmpeg"
26
+
27
+ RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
28
+ --mount=type=cache,target=/var/lib/apt,sharing=locked \
29
+ set -ex \
30
+ && rm -f /etc/apt/apt.conf.d/docker-clean \
31
+ && echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' >/etc/apt/apt.conf.d/keep-cache \
32
+ && apt-get update \
33
+ && apt-get -y install --no-install-recommends ${DEPENDENCIES} \
34
+ && echo "no" | dpkg-reconfigure dash
35
+
36
+ WORKDIR /opt/fish-speech
37
+
38
+ COPY . .
39
+
40
+ RUN --mount=type=cache,target=/root/.cache,sharing=locked \
41
+ set -ex \
42
+ && pip install -e .[stable]
43
+
44
+ COPY --from=stage-1 /opt/fish-speech/checkpoints /opt/fish-speech/checkpoints
45
+
46
+ ENV GRADIO_SERVER_NAME="0.0.0.0"
47
+
48
+ EXPOSE 7860
49
+
50
+ CMD ["./entrypoint.sh"]
dockerfile.dev ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ARG VERSION=dev
2
+ ARG BASE_IMAGE=ghcr.io/fishaudio/fish-speech:${VERSION}
3
+
4
+ FROM ${BASE_IMAGE}
5
+
6
+ ARG TOOLS=" \
7
+ git \
8
+ curl \
9
+ build-essential \
10
+ ffmpeg \
11
+ libsm6 \
12
+ libxext6 \
13
+ libjpeg-dev \
14
+ zlib1g-dev \
15
+ aria2 \
16
+ zsh \
17
+ openssh-server \
18
+ sudo \
19
+ protobuf-compiler \
20
+ libasound-dev \
21
+ portaudio19-dev \
22
+ libportaudio2 \
23
+ libportaudiocpp0 \
24
+ cmake"
25
+
26
+ RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
27
+ --mount=type=cache,target=/var/lib/apt,sharing=locked \
28
+ set -ex \
29
+ && apt-get update \
30
+ && apt-get -y install --no-install-recommends ${TOOLS}
31
+
32
+ # Install oh-my-zsh so your terminal looks nice
33
+ RUN sh -c "$(curl https://raw.githubusercontent.com/robbyrussell/oh-my-zsh/master/tools/install.sh)" "" --unattended
34
+
35
+ # Set zsh as default shell
36
+ RUN chsh -s /usr/bin/zsh
37
+ ENV SHELL=/usr/bin/zsh
docs/CNAME ADDED
@@ -0,0 +1 @@
 
 
1
+ speech.fish.audio
docs/README.ja.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+ <h1>Fish Speech</h1>
3
+
4
+ [English](../README.md) | [简体中文](README.zh.md) | [Portuguese](README.pt-BR.md) | **日本語** | [한국어](README.ko.md)<br>
5
+
6
+ <a href="https://www.producthunt.com/posts/fish-speech-1-4?embed=true&utm_source=badge-featured&utm_medium=badge&utm_souce=badge-fish&#0045;speech&#0045;1&#0045;4" target="_blank">
7
+ <img src="https://api.producthunt.com/widgets/embed-image/v1/featured.svg?post_id=488440&theme=light" alt="Fish&#0032;Speech&#0032;1&#0046;4 - Open&#0045;Source&#0032;Multilingual&#0032;Text&#0045;to&#0045;Speech&#0032;with&#0032;Voice&#0032;Cloning | Product Hunt" style="width: 250px; height: 54px;" width="250" height="54" />
8
+ </a>
9
+ <a href="https://trendshift.io/repositories/7014" target="_blank">
10
+ <img src="https://trendshift.io/api/badge/repositories/7014" alt="fishaudio%2Ffish-speech | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/>
11
+ </a>
12
+ <br>
13
+ </div>
14
+ <br>
15
+
16
+ <div align="center">
17
+ <img src="https://count.getloli.com/get/@fish-speech?theme=asoul" /><br>
18
+ </div>
19
+ <br>
20
+
21
+ <div align="center">
22
+ <a target="_blank" href="https://discord.gg/Es5qTB9BcN">
23
+ <img alt="Discord" src="https://img.shields.io/discord/1214047546020728892?color=%23738ADB&label=Discord&logo=discord&logoColor=white&style=flat-square"/>
24
+ </a>
25
+ <a target="_blank" href="https://hub.docker.com/r/fishaudio/fish-speech">
26
+ <img alt="Docker" src="https://img.shields.io/docker/pulls/fishaudio/fish-speech?style=flat-square&logo=docker"/>
27
+ </a>
28
+ <a target="_blank" href="https://huggingface.co/spaces/fishaudio/fish-speech-1">
29
+ <img alt="Huggingface" src="https://img.shields.io/badge/🤗%20-space%20demo-yellow"/>
30
+ </a>
31
+ </div>
32
+
33
+ このコードベースとすべてのモデルは、CC-BY-NC-SA-4.0 ライセンスの下でリリースされています。詳細については、[LICENSE](LICENSE)を参照してください。
34
+
35
+ ---
36
+
37
+ ## 機能
38
+
39
+ 1. **ゼロショット & フューショット TTS**:10〜30 秒の音声サンプルを入力して、高品質の TTS 出力を生成します。**詳細は [音声クローンのベストプラクティス](https://docs.fish.audio/text-to-speech/voice-clone-best-practices) を参照してください。**
40
+ 2. **多言語 & クロスリンガル対応**:多言語テキストを入力ボックスにコピーペーストするだけで、言語を気にする必要はありません。現在、英語、日本語、韓国語、中国語、フランス語、ドイツ語、アラビア語、スペイン語に対応しています。
41
+ 3. **音素依存なし**:このモデルは強力な汎化能力を持ち、TTS に音素を必要としません。あらゆる言語スクリプトに対応可能です。
42
+ 4. **高精度**:5 分間の英語テキストに対し、CER(文字誤り率)と WER(単語誤り率)は約 2%の精度を達成します。
43
+ 5. **高速**:fish-tech アクセラレーションにより、Nvidia RTX 4060 ラップトップではリアルタイムファクターが約 1:5、Nvidia RTX 4090 では約 1:15 です。
44
+ 6. **WebUI 推論**:使いやすい Gradio ベースの Web ユーザーインターフェースを搭載し、Chrome、Firefox、Edge などのブラウザに対応しています。
45
+ 7. **GUI 推論**:PyQt6 のグラフィカルインターフェースを提供し、API サーバーとシームレスに連携します。Linux、Windows、macOS に対応しています。[GUI を見る](https://github.com/AnyaCoder/fish-speech-gui)。
46
+ 8. **デプロイしやすい**:Linux、Windows、macOS にネイティブ対応した推論サーバーを簡単にセットアップでき、速度の低下を最小限に抑えます。
47
+
48
+ ## 免責事項
49
+
50
+ コードベースの違法な使用については一切責任を負いません。DMCA(デジタルミレニアム著作権法)およびその他の関連法については、地域の法律を参照してください。
51
+
52
+ ## オンラインデモ
53
+
54
+ [Fish Audio](https://fish.audio)
55
+
56
+ ## ローカル推論のクイックスタート
57
+
58
+ [inference.ipynb](/inference.ipynb)
59
+
60
+ ## ビデオ
61
+
62
+ #### V1.4 デモビデオ: https://www.bilibili.com/video/BV1pu46eVEk7
63
+
64
+ #### V1.2 デモビデオ: https://www.bilibili.com/video/BV1wz421B71D
65
+
66
+ #### V1.1 デモビデオ: https://www.bilibili.com/video/BV1zJ4m1K7cj
67
+
68
+ ## ドキュメント
69
+
70
+ - [英語](https://speech.fish.audio/)
71
+ - [中文](https://speech.fish.audio/zh/)
72
+ - [日本語](https://speech.fish.audio/ja/)
73
+ - [ポルトガル語 (ブラジル)](https://speech.fish.audio/pt/)
74
+
75
+ ## サンプル (2024/10/02 V1.4)
76
+
77
+ - [英語](https://speech.fish.audio/samples/)
78
+ - [中文](https://speech.fish.audio/zh/samples/)
79
+ - [日本語](https://speech.fish.audio/ja/samples/)
80
+ - [ポルトガル語 (ブラジル)](https://speech.fish.audio/pt/samples/)
81
+
82
+ ## クレジット
83
+
84
+ - [VITS2 (daniilrobnikov)](https://github.com/daniilrobnikov/vits2)
85
+ - [Bert-VITS2](https://github.com/fishaudio/Bert-VITS2)
86
+ - [GPT VITS](https://github.com/innnky/gpt-vits)
87
+ - [MQTTS](https://github.com/b04901014/MQTTS)
88
+ - [GPT Fast](https://github.com/pytorch-labs/gpt-fast)
89
+ - [GPT-SoVITS](https://github.com/RVC-Boss/GPT-SoVITS)
90
+
91
+ ## スポンサー
92
+
93
+ <div>
94
+ <a href="https://6block.com/">
95
+ <img src="https://avatars.githubusercontent.com/u/60573493" width="100" height="100" alt="6Block Avatar"/>
96
+ </a>
97
+ <br>
98
+ <a href="https://6block.com/">データ処理スポンサー:6Block</a>
99
+ </div>
100
+ <div>
101
+ <a href="https://www.lepton.ai/">
102
+ <img src="https://www.lepton.ai/favicons/apple-touch-icon.png" width="100" height="100" alt="Lepton Avatar"/>
103
+ </a>
104
+ <br>
105
+ <a href="https://www.lepton.ai/">Fish AudioはLepton.AIで提供されています</a>
106
+ </div>
docs/README.ko.md ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+ <h1>Fish Speech</h1>
3
+
4
+ [English](../README.md) | [简体中文](README.zh.md) | [Portuguese](README.pt-BR.md) | [日本語](README.ja.md) | **한국어** <br>
5
+
6
+ <a href="https://www.producthunt.com/posts/fish-speech-1-4?embed=true&utm_source=badge-featured&utm_medium=badge&utm_souce=badge-fish&#0045;speech&#0045;1&#0045;4" target="_blank">
7
+ <img src="https://api.producthunt.com/widgets/embed-image/v1/featured.svg?post_id=488440&theme=light" alt="Fish&#0032;Speech&#0032;1&#0046;4 - Open&#0045;Source&#0032;Multilingual&#0032;Text&#0045;to&#0045;Speech&#0032;with&#0032;Voice&#0032;Cloning | Product Hunt" style="width: 250px; height: 54px;" width="250" height="54" />
8
+ </a>
9
+ <a href="https://trendshift.io/repositories/7014" target="_blank">
10
+ <img src="https://trendshift.io/api/badge/repositories/7014" alt="fishaudio%2Ffish-speech | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/>
11
+ </a>
12
+ <br>
13
+ </div>
14
+ <br>
15
+
16
+ <div align="center">
17
+ <img src="https://count.getloli.com/get/@fish-speech?theme=asoul" /><br>
18
+ </div>
19
+ <br>
20
+
21
+ <div align="center">
22
+ <a target="_blank" href="https://discord.gg/Es5qTB9BcN">
23
+ <img alt="Discord" src="https://img.shields.io/discord/1214047546020728892?color=%23738ADB&label=Discord&logo=discord&logoColor=white&style=flat-square"/>
24
+ </a>
25
+ <a target="_blank" href="https://hub.docker.com/r/fishaudio/fish-speech">
26
+ <img alt="Docker" src="https://img.shields.io/docker/pulls/fishaudio/fish-speech?style=flat-square&logo=docker"/>
27
+ </a>
28
+ <a target="_blank" href="https://huggingface.co/spaces/fishaudio/fish-speech-1">
29
+ <img alt="Huggingface" src="https://img.shields.io/badge/🤗%20-space%20demo-yellow"/>
30
+ </a>
31
+ </div>
32
+
33
+ 이 코드베이스와 모든 모델은 CC-BY-NC-SA-4.0 라이선스에 따라 배포됩니다. 자세한 내용은 [LICENSE](LICENSE)를 참조하시길 바랍니다.
34
+
35
+ ---
36
+
37
+ ## 기능
38
+
39
+ 1. **Zero-shot & Few-shot TTS:** 10초에서 30초의 음성 샘플을 입력하여 고품질의 TTS 출력을 생성합니다. **자세한 가이드는 [모범 사례](https://docs.fish.audio/text-to-speech/voice-clone-best-practices)를 참조하시길 바랍니다.**
40
+
41
+ 2. **다국어 및 교차 언어 지원:** 다국어 걱정 없이, 텍스트를 입력창에 복사하여 붙여넣기만 하면 됩니다. 현재 영어, 일본어, 한국어, 중국어, 프랑스어, 독일어, 아랍어, 스페인어를 지원합니다.
42
+
43
+ 3. **음소 의존성 제거:** 이 모델은 강력한 일반화 능력을 가지고 있으며, TTS가 음소에 의존하지 않습니다. 모든 언어 스크립트 텍스트를 손쉽게 처리할 수 있습니다.
44
+
45
+ 4. **높은 정확도:** 영어 텍스트 기준 5분 기준에서 단, 2%의 문자 오류율(CER)과 단어 오류율(WER)을 달성합니다.
46
+
47
+ 5. **빠른 속도:** fish-tech 가속을 통해 실시간 인자(RTF)는 Nvidia RTX 4060 노트북에서는 약 1:5, Nvidia RTX 4090에서는 1:15입니다.
48
+
49
+ 6. **웹 UI 추론:** Chrome, Firefox, Edge 등 다양한 브라우저에서 호환되는 Gradio 기반의 사용하기 쉬운 웹 UI를 제공합니다.
50
+
51
+ 7. **GUI 추론:** PyQt6 그래픽 인터페이스를 제공하여 API 서버와 원활하게 작동합니다. Linux, Windows 및 macOS를 지원합니다. [GUI 참조](https://github.com/AnyaCoder/fish-speech-gui).
52
+
53
+ 8. **배포 친화적:** Linux, Windows, macOS에서 네이티브로 지원되는 추론 서버를 쉽게 설정할 수 있어 속도 손실을 최소화합니다.
54
+
55
+ ## 면책 조항
56
+
57
+ 이 코드베이스의 불법적 사용에 대해 어떠한 책임도 지지 않습니다. DMCA 및 관련 법률에 대한 로컬 법률을 참조하십시오.
58
+
59
+ ## 온라인 데모
60
+
61
+ [Fish Audio](https://fish.audio)
62
+
63
+ ## 로컬 추론을 위한 빠른 시작
64
+
65
+ [inference.ipynb](/inference.ipynb)
66
+
67
+ ## 영상
68
+
69
+ #### V1.4 데모 영상: [Youtube](https://www.youtube.com/watch?v=Ghc8cJdQyKQ)
70
+
71
+ ## 문서
72
+
73
+ - [English](https://speech.fish.audio/)
74
+ - [中文](https://speech.fish.audio/zh/)
75
+ - [日本語](https://speech.fish.audio/ja/)
76
+ - [Portuguese (Brazil)](https://speech.fish.audio/pt/)
77
+ - [한국어](https://speech.fish.audio/ko/)
78
+
79
+ ## Samples (2024/10/02 V1.4)
80
+
81
+ - [English](https://speech.fish.audio/samples/)
82
+ - [中文](https://speech.fish.audio/zh/samples/)
83
+ - [日本語](https://speech.fish.audio/ja/samples/)
84
+ - [Portuguese (Brazil)](https://speech.fish.audio/pt/samples/)
85
+ - [한국어](https://speech.fish.audio/ko/samples/)
86
+
87
+ ## Credits
88
+
89
+ - [VITS2 (daniilrobnikov)](https://github.com/daniilrobnikov/vits2)
90
+ - [Bert-VITS2](https://github.com/fishaudio/Bert-VITS2)
91
+ - [GPT VITS](https://github.com/innnky/gpt-vits)
92
+ - [MQTTS](https://github.com/b04901014/MQTTS)
93
+ - [GPT Fast](https://github.com/pytorch-labs/gpt-fast)
94
+ - [GPT-SoVITS](https://github.com/RVC-Boss/GPT-SoVITS)
95
+
96
+ ## Sponsor
97
+
98
+ <div>
99
+ <a href="https://6block.com/">
100
+ <img src="https://avatars.githubusercontent.com/u/60573493" width="100" height="100" alt="6Block Avatar"/>
101
+ </a>
102
+ <br>
103
+ <a href="https://6block.com/">데이터 처리 후원: 6Block</a>
104
+ </div>
105
+ <div>
106
+ <a href="https://www.lepton.ai/">
107
+ <img src="https://www.lepton.ai/favicons/apple-touch-icon.png" width="100" height="100" alt="Lepton Avatar"/>
108
+ </a>
109
+ <br>
110
+ <a href="https://www.lepton.ai/">Fish Audio는 Lepton.AI에서 제공됩니다</a>
111
+ </div>
docs/README.pt-BR.md ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+ <h1>Fish Speech</h1>
3
+
4
+ [English](../README.md) | [简体中文](README.zh.md) | **Portuguese** | [日本語](README.ja.md) | [한국어](README.ko.md)<br>
5
+
6
+ <a href="https://www.producthunt.com/posts/fish-speech-1-4?embed=true&utm_source=badge-featured&utm_medium=badge&utm_souce=badge-fish&#0045;speech&#0045;1&#0045;4" target="_blank">
7
+ <img src="https://api.producthunt.com/widgets/embed-image/v1/featured.svg?post_id=488440&theme=light" alt="Fish&#0032;Speech&#0032;1&#0046;4 - Open&#0045;Source&#0032;Multilingual&#0032;Text&#0045;to&#0045;Speech&#0032;with&#0032;Voice&#0032;Cloning | Product Hunt" style="width: 250px; height: 54px;" width="250" height="54" />
8
+ </a>
9
+ <a href="https://trendshift.io/repositories/7014" target="_blank">
10
+ <img src="https://trendshift.io/api/badge/repositories/7014" alt="fishaudio%2Ffish-speech | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/>
11
+ </a>
12
+ <br>
13
+ </div>
14
+ <br>
15
+
16
+ <div align="center">
17
+ <img src="https://count.getloli.com/get/@fish-speech?theme=asoul" /><br>
18
+ </div>
19
+
20
+ <br>
21
+
22
+ <div align="center">
23
+ <a target="_blank" href="https://discord.gg/Es5qTB9BcN">
24
+ <img alt="Discord" src="https://img.shields.io/discord/1214047546020728892?color=%23738ADB&label=Discord&logo=discord&logoColor=white&style=flat-square"/>
25
+ </a>
26
+ <a target="_blank" href="https://hub.docker.com/r/fishaudio/fish-speech">
27
+ <img alt="Docker" src="https://img.shields.io/docker/pulls/fishaudio/fish-speech?style=flat-square&logo=docker"/>
28
+ </a>
29
+ <a target="_blank" href="https://huggingface.co/spaces/fishaudio/fish-speech-1">
30
+ <img alt="Huggingface" src="https://img.shields.io/badge/🤗%20-space%20demo-yellow"/>
31
+ </a>
32
+ </div>
33
+
34
+ Este código-fonte e os modelos são publicados sob a licença CC-BY-NC-SA-4.0. Consulte [LICENSE](LICENSE) para mais detalhes.
35
+
36
+ ---
37
+
38
+ ## Funcionalidades
39
+
40
+ 1. **TTS Zero-shot & Few-shot**: Insira uma amostra vocal de 10 a 30 segundos para gerar saída de TTS de alta qualidade. **Para diretrizes detalhadas, veja [Melhores Práticas para Clonagem de Voz](https://docs.fish.audio/text-to-speech/voice-clone-best-practices).**
41
+
42
+ 2. **Suporte Multilíngue e Interlingual**: Basta copiar e colar o texto multilíngue na caixa de entrada—não se preocupe com o idioma. Atualmente suporta inglês, japonês, coreano, chinês, francês, alemão, árabe e espanhol.
43
+
44
+ 3. **Sem Dependência de Fonemas**: O modelo tem forte capacidade de generalização e não depende de fonemas para TTS. Ele pode lidar com textos em qualquer script de idioma.
45
+
46
+ 4. **Alta Precisão**: Alcança uma CER (Taxa de Erro de Caracteres) e WER (Taxa de Erro de Palavras) de cerca de 2% para textos de 5 minutos em inglês.
47
+
48
+ 5. **Rápido**: Com a aceleração fish-tech, o fator de tempo real é de aproximadamente 1:5 em um laptop Nvidia RTX 4060 e 1:15 em uma Nvidia RTX 4090.
49
+
50
+ 6. **Inferência WebUI**: Apresenta uma interface de usuário web baseada em Gradio, fácil de usar e compatível com navegadores como Chrome, Firefox e Edge.
51
+
52
+ 7. **Inferência GUI**: Oferece uma interface gráfica PyQt6 que funciona perfeitamente com o servidor API. Suporta Linux, Windows e macOS. [Veja o GUI](https://github.com/AnyaCoder/fish-speech-gui).
53
+
54
+ 8. **Fácil de Implantar**: Configura facilmente um servidor de inferência com suporte nativo para Linux, Windows e macOS, minimizando a perda de velocidade.
55
+
56
+ ## Isenção de Responsabilidade
57
+
58
+ Não nos responsabilizamos por qualquer uso ilegal do código-fonte. Consulte as leis locais sobre DMCA (Digital Millennium Copyright Act) e outras leis relevantes em sua região.
59
+
60
+ ## Demonstração Online
61
+
62
+ [Fish Audio](https://fish.audio)
63
+
64
+ ## Início Rápido de Inferência Local
65
+
66
+ [inference.ipynb](/inference.ipynb)
67
+
68
+ ## Vídeos
69
+
70
+ #### 1.4 Introdução: https://www.bilibili.com/video/BV1pu46eVEk7
71
+
72
+ #### 1.2 Introdução: https://www.bilibili.com/video/BV1wz421B71D
73
+
74
+ #### 1.1 Apresentação Técnica: https://www.bilibili.com/video/BV1zJ4m1K7cj
75
+
76
+ ## Documentação
77
+
78
+ - [Inglês](https://speech.fish.audio/)
79
+ - [Chinês](https://speech.fish.audio/zh/)
80
+ - [Japonês](https://speech.fish.audio/ja/)
81
+ - [Português (Brasil)](https://speech.fish.audio/pt/)
82
+
83
+ ## Exemplos
84
+
85
+ - [Inglês](https://speech.fish.audio/samples/)
86
+ - [Chinês](https://speech.fish.audio/zh/samples/)
87
+ - [Japonês](https://speech.fish.audio/ja/samples/)
88
+ - [Português (Brasil)](https://speech.fish.audio/pt/samples/)
89
+
90
+ ## Agradecimentos
91
+
92
+ - [VITS2 (daniilrobnikov)](https://github.com/daniilrobnikov/vits2)
93
+ - [Bert-VITS2](https://github.com/fishaudio/Bert-VITS2)
94
+ - [GPT VITS](https://github.com/innnky/gpt-vits)
95
+ - [MQTTS](https://github.com/b04901014/MQTTS)
96
+ - [GPT Fast](https://github.com/pytorch-labs/gpt-fast)
97
+ - [GPT-SoVITS](https://github.com/RVC-Boss/GPT-SoVITS)
98
+
99
+ ## Patrocinadores
100
+
101
+ <div>
102
+ <a href="https://6block.com/">
103
+ <img src="https://avatars.githubusercontent.com/u/60573493" width="100" height="100" alt="6Block Avatar"/>
104
+ </a>
105
+ <br>
106
+ <a href="https://6block.com/">Servidores de processamento de dados fornecidos por 6Block</a>
107
+ </div>
108
+ <div>
109
+ <a href="https://www.lepton.ai/">
110
+ <img src="https://www.lepton.ai/favicons/apple-touch-icon.png" width="100" height="100" alt="Lepton Avatar"/>
111
+ </a>
112
+ <br>
113
+ <a href="https://www.lepton.ai/">Inferência online do Fish Audio em parceria com a Lepton</a>
114
+ </div>
docs/README.zh.md ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+ <h1>Fish Speech</h1>
3
+
4
+ [English](../README.md) | **简体中文** | [Portuguese](README.pt-BR.md) | [日本語](README.ja.md) | [한국어](README.ko.md)<br>
5
+
6
+ <a href="https://www.producthunt.com/posts/fish-speech-1-4?embed=true&utm_source=badge-featured&utm_medium=badge&utm_souce=badge-fish&#0045;speech&#0045;1&#0045;4" target="_blank">
7
+ <img src="https://api.producthunt.com/widgets/embed-image/v1/featured.svg?post_id=488440&theme=light" alt="Fish&#0032;Speech&#0032;1&#0046;4 - Open&#0045;Source&#0032;Multilingual&#0032;Text&#0045;to&#0045;Speech&#0032;with&#0032;Voice&#0032;Cloning | Product Hunt" style="width: 250px; height: 54px;" width="250" height="54" />
8
+ </a>
9
+ <a href="https://trendshift.io/repositories/7014" target="_blank">
10
+ <img src="https://trendshift.io/api/badge/repositories/7014" alt="fishaudio%2Ffish-speech | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/>
11
+ </a>
12
+ <br>
13
+ </div>
14
+ <br>
15
+
16
+ <div align="center">
17
+ <img src="https://count.getloli.com/get/@fish-speech?theme=asoul" /><br>
18
+ </div>
19
+
20
+ <br>
21
+
22
+ <div align="center">
23
+ <a target="_blank" href="https://discord.gg/Es5qTB9BcN">
24
+ <img alt="Discord" src="https://img.shields.io/discord/1214047546020728892?color=%23738ADB&label=Discord&logo=discord&logoColor=white&style=flat-square"/>
25
+ </a>
26
+ <a target="_blank" href="https://hub.docker.com/r/fishaudio/fish-speech">
27
+ <img alt="Docker" src="https://img.shields.io/docker/pulls/fishaudio/fish-speech?style=flat-square&logo=docker"/>
28
+ </a>
29
+ <a target="_blank" href="https://huggingface.co/spaces/fishaudio/fish-speech-1">
30
+ <img alt="Huggingface" src="https://img.shields.io/badge/🤗%20-space%20demo-yellow"/>
31
+ </a>
32
+ <br>
33
+
34
+ </div>
35
+
36
+ 此代码库及模型根据 CC-BY-NC-SA-4.0 许可证发布。请参阅 [LICENSE](LICENSE) 了解更多细节.
37
+
38
+ ---
39
+
40
+ ## 特性
41
+
42
+ 1. **零样本 & 小样本 TTS**:输入 10 到 30 秒的声音样本即可生成高质量的 TTS 输出。**详见 [语音克隆最佳实践指南](https://docs.fish.audio/text-to-speech/voice-clone-best-practices)。**
43
+ 2. **多语言 & 跨语言支持**:只需复制并粘贴多语言文本到输入框中,无需担心语言问题。目前支持英语、日语、韩语、中文、法语、德语、阿拉伯语和西班牙语。
44
+ 3. **无音素依赖**:模型具备强大的泛化能力,不依赖音素进行 TTS,能够处理任何文字表示的语言。
45
+ 4. **高准确率**:在 5 分钟的英文文本上,达到了约 2% 的 CER(字符错误率)和 WER(词错误率)。
46
+ 5. **快速**:通过 fish-tech 加速,在 Nvidia RTX 4060 笔记本上的实时因子约为 1:5,在 Nvidia RTX 4090 上约为 1:15。
47
+ 6. **WebUI 推理**:提供易于使用的基于 Gradio 的网页用户界面,兼容 Chrome、Firefox、Edge 等浏览器。
48
+ 7. **GUI 推理**:提供 PyQt6 图形界面,与 API 服务器无缝协作。支持 Linux、Windows 和 macOS。[查看 GUI](https://github.com/AnyaCoder/fish-speech-gui)。
49
+ 8. **易于部署**:轻松设置推理服务器,原生支持 Linux、Windows 和 macOS,最大程度减少速度损失。
50
+
51
+ ## 免责声明
52
+
53
+ 我们不对代码库的任何非法使用承担任何责任. 请参阅您当地关于 DMCA (数字千年法案) 和其他相关法律法规.
54
+
55
+ ## 在线 DEMO
56
+
57
+ [Fish Audio](https://fish.audio)
58
+
59
+ ## 快速开始本地推理
60
+
61
+ [inference.ipynb](/inference.ipynb)
62
+
63
+ ## 视频
64
+
65
+ #### 1.4 介绍: https://www.bilibili.com/video/BV1pu46eVEk7
66
+
67
+ #### 1.2 介绍: https://www.bilibili.com/video/BV1wz421B71D
68
+
69
+ #### 1.1 介绍: https://www.bilibili.com/video/BV1zJ4m1K7cj
70
+
71
+ ## 文档
72
+
73
+ - [English](https://speech.fish.audio/)
74
+ - [中文](https://speech.fish.audio/zh/)
75
+ - [日本語](https://speech.fish.audio/ja/)
76
+ - [Portuguese (Brazil)](https://speech.fish.audio/pt/)
77
+
78
+ ## 例子 (2024/10/02 V1.4)
79
+
80
+ - [English](https://speech.fish.audio/samples/)
81
+ - [中文](https://speech.fish.audio/zh/samples/)
82
+ - [日本語](https://speech.fish.audio/ja/samples/)
83
+ - [Portuguese (Brazil)](https://speech.fish.audio/pt/samples/)
84
+
85
+ ## 鸣谢
86
+
87
+ - [VITS2 (daniilrobnikov)](https://github.com/daniilrobnikov/vits2)
88
+ - [Bert-VITS2](https://github.com/fishaudio/Bert-VITS2)
89
+ - [GPT VITS](https://github.com/innnky/gpt-vits)
90
+ - [MQTTS](https://github.com/b04901014/MQTTS)
91
+ - [GPT Fast](https://github.com/pytorch-labs/gpt-fast)
92
+ - [GPT-SoVITS](https://github.com/RVC-Boss/GPT-SoVITS)
93
+
94
+ ## 赞助
95
+
96
+ <div>
97
+ <a href="https://6block.com/">
98
+ <img src="https://avatars.githubusercontent.com/u/60573493" width="100" height="100" alt="6Block Avatar"/>
99
+ </a>
100
+ <br>
101
+ <a href="https://6block.com/">数据处理服务器由 6Block 提供</a>
102
+ </div>
103
+ <div>
104
+ <a href="https://www.lepton.ai/">
105
+ <img src="https://www.lepton.ai/favicons/apple-touch-icon.png" width="100" height="100" alt="Lepton Avatar"/>
106
+ </a>
107
+ <br>
108
+ <a href="https://www.lepton.ai/">Fish Audio 在线推理与 Lepton 合作</a>
109
+ </div>
docs/assets/figs/VS_1.jpg ADDED
docs/assets/figs/VS_1_pt-BR.png ADDED
docs/assets/figs/agent_gradio.png ADDED
docs/assets/figs/diagram.png ADDED
docs/assets/figs/diagrama.png ADDED
docs/assets/figs/logo-circle.png ADDED
docs/en/finetune.md ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Fine-tuning
2
+
3
+ Obviously, when you opened this page, you were not satisfied with the performance of the few-shot pre-trained model. You want to fine-tune a model to improve its performance on your dataset.
4
+
5
+ In current version, you only need to finetune the 'LLAMA' part.
6
+
7
+ ## Fine-tuning LLAMA
8
+ ### 1. Prepare the dataset
9
+
10
+ ```
11
+ .
12
+ ├── SPK1
13
+ │ ├── 21.15-26.44.lab
14
+ │ ├── 21.15-26.44.mp3
15
+ │ ├── 27.51-29.98.lab
16
+ │ ├── 27.51-29.98.mp3
17
+ │ ├── 30.1-32.71.lab
18
+ │ └── 30.1-32.71.mp3
19
+ └── SPK2
20
+ ├── 38.79-40.85.lab
21
+ └── 38.79-40.85.mp3
22
+ ```
23
+
24
+ You need to convert your dataset into the above format and place it under `data`. The audio file can have the extensions `.mp3`, `.wav`, or `.flac`, and the annotation file should have the extensions `.lab`.
25
+
26
+ !!! info "Dataset Format"
27
+ The `.lab` annotation file only needs to contain the transcription of the audio, with no special formatting required. For example, if `hi.mp3` says "Hello, goodbye," then the `hi.lab` file would contain a single line of text: "Hello, goodbye."
28
+
29
+ !!! warning
30
+ It's recommended to apply loudness normalization to the dataset. You can use [fish-audio-preprocess](https://github.com/fishaudio/audio-preprocess) to do this.
31
+
32
+ ```bash
33
+ fap loudness-norm data-raw data --clean
34
+ ```
35
+
36
+
37
+ ### 2. Batch extraction of semantic tokens
38
+
39
+ Make sure you have downloaded the VQGAN weights. If not, run the following command:
40
+
41
+ ```bash
42
+ huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
43
+ ```
44
+
45
+ You can then run the following command to extract semantic tokens:
46
+
47
+ ```bash
48
+ python tools/vqgan/extract_vq.py data \
49
+ --num-workers 1 --batch-size 16 \
50
+ --config-name "firefly_gan_vq" \
51
+ --checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth"
52
+ ```
53
+
54
+ !!! note
55
+ You can adjust `--num-workers` and `--batch-size` to increase extraction speed, but please make sure not to exceed your GPU memory limit.
56
+ For the VITS format, you can specify a file list using `--filelist xxx.list`.
57
+
58
+ This command will create `.npy` files in the `data` directory, as shown below:
59
+
60
+ ```
61
+ .
62
+ ├── SPK1
63
+ │ ├── 21.15-26.44.lab
64
+ │ ├── 21.15-26.44.mp3
65
+ │ ├── 21.15-26.44.npy
66
+ │ ├── 27.51-29.98.lab
67
+ │ ├── 27.51-29.98.mp3
68
+ │ ├── 27.51-29.98.npy
69
+ │ ├── 30.1-32.71.lab
70
+ │ ├── 30.1-32.71.mp3
71
+ │ └── 30.1-32.71.npy
72
+ └── SPK2
73
+ ├── 38.79-40.85.lab
74
+ ├── 38.79-40.85.mp3
75
+ └── 38.79-40.85.npy
76
+ ```
77
+
78
+ ### 3. Pack the dataset into protobuf
79
+
80
+ ```bash
81
+ python tools/llama/build_dataset.py \
82
+ --input "data" \
83
+ --output "data/protos" \
84
+ --text-extension .lab \
85
+ --num-workers 16
86
+ ```
87
+
88
+ After the command finishes executing, you should see the `quantized-dataset-ft.protos` file in the `data` directory.
89
+
90
+ ### 4. Finally, fine-tuning with LoRA
91
+
92
+ Similarly, make sure you have downloaded the `LLAMA` weights. If not, run the following command:
93
+
94
+ ```bash
95
+ huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
96
+ ```
97
+
98
+ Finally, you can start the fine-tuning by running the following command:
99
+
100
+ ```bash
101
+ python fish_speech/train.py --config-name text2semantic_finetune \
102
+ project=$project \
103
+ [email protected]_config=r_8_alpha_16
104
+ ```
105
+
106
+ !!! note
107
+ You can modify the training parameters such as `batch_size`, `gradient_accumulation_steps`, etc. to fit your GPU memory by modifying `fish_speech/configs/text2semantic_finetune.yaml`.
108
+
109
+ !!! note
110
+ For Windows users, you can use `trainer.strategy.process_group_backend=gloo` to avoid `nccl` issues.
111
+
112
+ After training is complete, you can refer to the [inference](inference.md) section to generate speech.
113
+
114
+ !!! info
115
+ By default, the model will only learn the speaker's speech patterns and not the timbre. You still need to use prompts to ensure timbre stability.
116
+ If you want to learn the timbre, you can increase the number of training steps, but this may lead to overfitting.
117
+
118
+ After training, you need to convert the LoRA weights to regular weights before performing inference.
119
+
120
+ ```bash
121
+ python tools/llama/merge_lora.py \
122
+ --lora-config r_8_alpha_16 \
123
+ --base-weight checkpoints/fish-speech-1.5 \
124
+ --lora-weight results/$project/checkpoints/step_000000010.ckpt \
125
+ --output checkpoints/fish-speech-1.5-yth-lora/
126
+ ```
127
+ !!! note
128
+ You may also try other checkpoints. We suggest using the earliest checkpoint that meets your requirements, as they often perform better on out-of-distribution (OOD) data.
docs/en/index.md ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Introduction
2
+
3
+ <div>
4
+ <a target="_blank" href="https://discord.gg/Es5qTB9BcN">
5
+ <img alt="Discord" src="https://img.shields.io/discord/1214047546020728892?color=%23738ADB&label=Discord&logo=discord&logoColor=white&style=flat-square"/>
6
+ </a>
7
+ <a target="_blank" href="http://qm.qq.com/cgi-bin/qm/qr?_wv=1027&k=jCKlUP7QgSm9kh95UlBoYv6s1I-Apl1M&authKey=xI5ttVAp3do68IpEYEalwXSYZFdfxZSkah%2BctF5FIMyN2NqAa003vFtLqJyAVRfF&noverify=0&group_code=593946093">
8
+ <img alt="QQ" src="https://img.shields.io/badge/QQ Group-%2312B7F5?logo=tencent-qq&logoColor=white&style=flat-square"/>
9
+ </a>
10
+ <a target="_blank" href="https://hub.docker.com/r/fishaudio/fish-speech">
11
+ <img alt="Docker" src="https://img.shields.io/docker/pulls/fishaudio/fish-speech?style=flat-square&logo=docker"/>
12
+ </a>
13
+ </div>
14
+
15
+ !!! warning
16
+ We assume no responsibility for any illegal use of the codebase. Please refer to the local laws regarding DMCA (Digital Millennium Copyright Act) and other relevant laws in your area. <br/>
17
+ This codebase and all models are released under the CC-BY-NC-SA-4.0 license.
18
+
19
+ <p align="center">
20
+ <img src="../assets/figs/diagram.png" width="75%">
21
+ </p>
22
+
23
+ ## Requirements
24
+
25
+ - GPU Memory: 4GB (for inference), 8GB (for fine-tuning)
26
+ - System: Linux, Windows
27
+
28
+ ## Windows Setup
29
+
30
+ Professional Windows users may consider using WSL2 or Docker to run the codebase.
31
+
32
+ ```bash
33
+ # Create a python 3.10 virtual environment, you can also use virtualenv
34
+ conda create -n fish-speech python=3.10
35
+ conda activate fish-speech
36
+
37
+ # Install pytorch
38
+ pip3 install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu121
39
+
40
+ # Install fish-speech
41
+ pip3 install -e .
42
+
43
+ # (Enable acceleration) Install triton-windows
44
+ pip install https://github.com/AnyaCoder/fish-speech/releases/download/v0.1.0/triton_windows-0.1.0-py3-none-any.whl
45
+ ```
46
+
47
+ Non-professional Windows users can consider the following basic methods to run the project without a Linux environment (with model compilation capabilities, i.e., `torch.compile`):
48
+
49
+ 1. Extract the project package.
50
+ 2. Click `install_env.bat` to install the environment.
51
+ 3. If you want to enable compilation acceleration, follow this step:
52
+ 1. Download the LLVM compiler from the following links:
53
+ - [LLVM-17.0.6 (Official Site Download)](https://huggingface.co/fishaudio/fish-speech-1/resolve/main/LLVM-17.0.6-win64.exe?download=true)
54
+ - [LLVM-17.0.6 (Mirror Site Download)](https://hf-mirror.com/fishaudio/fish-speech-1/resolve/main/LLVM-17.0.6-win64.exe?download=true)
55
+ - After downloading `LLVM-17.0.6-win64.exe`, double-click to install, select an appropriate installation location, and most importantly, check the `Add Path to Current User` option to add the environment variable.
56
+ - Confirm that the installation is complete.
57
+ 2. Download and install the Microsoft Visual C++ Redistributable to solve potential .dll missing issues:
58
+ - [MSVC++ 14.40.33810.0 Download](https://aka.ms/vs/17/release/vc_redist.x64.exe)
59
+ 3. Download and install Visual Studio Community Edition to get MSVC++ build tools and resolve LLVM's header file dependencies:
60
+ - [Visual Studio Download](https://visualstudio.microsoft.com/zh-hans/downloads/)
61
+ - After installing Visual Studio Installer, download Visual Studio Community 2022.
62
+ - As shown below, click the `Modify` button and find the `Desktop development with C++` option to select and download.
63
+ 4. Download and install [CUDA Toolkit 12.x](https://developer.nvidia.com/cuda-12-1-0-download-archive?target_os=Windows&target_arch=x86_64)
64
+ 4. Double-click `start.bat` to open the training inference WebUI management interface. If needed, you can modify the `API_FLAGS` as prompted below.
65
+
66
+ !!! info "Optional"
67
+
68
+ Want to start the inference WebUI?
69
+
70
+ Edit the `API_FLAGS.txt` file in the project root directory and modify the first three lines as follows:
71
+ ```
72
+ --infer
73
+ # --api
74
+ # --listen ...
75
+ ...
76
+ ```
77
+
78
+ !!! info "Optional"
79
+
80
+ Want to start the API server?
81
+
82
+ Edit the `API_FLAGS.txt` file in the project root directory and modify the first three lines as follows:
83
+
84
+ ```
85
+ # --infer
86
+ --api
87
+ --listen ...
88
+ ...
89
+ ```
90
+
91
+ !!! info "Optional"
92
+
93
+ Double-click `run_cmd.bat` to enter the conda/python command line environment of this project.
94
+
95
+ ## Linux Setup
96
+
97
+ See [pyproject.toml](../../pyproject.toml) for details.
98
+ ```bash
99
+ # Create a python 3.10 virtual environment, you can also use virtualenv
100
+ conda create -n fish-speech python=3.10
101
+ conda activate fish-speech
102
+
103
+ # Install pytorch
104
+ pip3 install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1
105
+
106
+ # (Ubuntu / Debian User) Install sox + ffmpeg
107
+ apt install libsox-dev ffmpeg
108
+
109
+ # (Ubuntu / Debian User) Install pyaudio
110
+ apt install build-essential \
111
+ cmake \
112
+ libasound-dev \
113
+ portaudio19-dev \
114
+ libportaudio2 \
115
+ libportaudiocpp0
116
+
117
+ # Install fish-speech
118
+ pip3 install -e .[stable]
119
+ ```
120
+
121
+ ## macos setup
122
+
123
+ If you want to perform inference on MPS, please add the `--device mps` flag.
124
+ Please refer to [this PR](https://github.com/fishaudio/fish-speech/pull/461#issuecomment-2284277772) for a comparison of inference speeds.
125
+
126
+ !!! warning
127
+ The `compile` option is not officially supported on Apple Silicon devices, so there is no guarantee that inference speed will improve.
128
+
129
+ ```bash
130
+ # create a python 3.10 virtual environment, you can also use virtualenv
131
+ conda create -n fish-speech python=3.10
132
+ conda activate fish-speech
133
+ # install pytorch
134
+ pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1
135
+ # install fish-speech
136
+ pip install -e .[stable]
137
+ ```
138
+
139
+ ## Docker Setup
140
+
141
+ 1. Install NVIDIA Container Toolkit:
142
+
143
+ To use GPU for model training and inference in Docker, you need to install NVIDIA Container Toolkit:
144
+
145
+ For Ubuntu users:
146
+
147
+ ```bash
148
+ # Add repository
149
+ curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
150
+ && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
151
+ sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
152
+ sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
153
+ # Install nvidia-container-toolkit
154
+ sudo apt-get update
155
+ sudo apt-get install -y nvidia-container-toolkit
156
+ # Restart Docker service
157
+ sudo systemctl restart docker
158
+ ```
159
+
160
+ For users of other Linux distributions, please refer to: [NVIDIA Container Toolkit Install-guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html).
161
+
162
+ 2. Pull and run the fish-speech image
163
+
164
+ ```shell
165
+ # Pull the image
166
+ docker pull fishaudio/fish-speech:latest-dev
167
+ # Run the image
168
+ docker run -it \
169
+ --name fish-speech \
170
+ --gpus all \
171
+ -p 7860:7860 \
172
+ fishaudio/fish-speech:latest-dev \
173
+ zsh
174
+ # If you need to use a different port, please modify the -p parameter to YourPort:7860
175
+ ```
176
+
177
+ 3. Download model dependencies
178
+
179
+ Make sure you are in the terminal inside the docker container, then download the required `vqgan` and `llama` models from our huggingface repository.
180
+
181
+ ```bash
182
+ huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
183
+ ```
184
+
185
+ 4. Configure environment variables and access WebUI
186
+
187
+ In the terminal inside the docker container, enter `export GRADIO_SERVER_NAME="0.0.0.0"` to allow external access to the gradio service inside docker.
188
+ Then in the terminal inside the docker container, enter `python tools/run_webui.py` to start the WebUI service.
189
+
190
+ If you're using WSL or MacOS, visit [http://localhost:7860](http://localhost:7860) to open the WebUI interface.
191
+
192
+ If it's deployed on a server, replace localhost with your server's IP.
193
+
194
+ ## Changelog
195
+
196
+ - 2024/09/10: Updated Fish-Speech to 1.4 version, with an increase in dataset size and a change in the quantizer's n_groups from 4 to 8.
197
+ - 2024/07/02: Updated Fish-Speech to 1.2 version, remove VITS Decoder, and greatly enhanced zero-shot ability.
198
+ - 2024/05/10: Updated Fish-Speech to 1.1 version, implement VITS decoder to reduce WER and improve timbre similarity.
199
+ - 2024/04/22: Finished Fish-Speech 1.0 version, significantly modified VQGAN and LLAMA models.
200
+ - 2023/12/28: Added `lora` fine-tuning support.
201
+ - 2023/12/27: Add `gradient checkpointing`, `causual sampling`, and `flash-attn` support.
202
+ - 2023/12/19: Updated webui and HTTP API.
203
+ - 2023/12/18: Updated fine-tuning documentation and related examples.
204
+ - 2023/12/17: Updated `text2semantic` model, supporting phoneme-free mode.
205
+ - 2023/12/13: Beta version released, includes VQGAN model and a language model based on LLAMA (phoneme support only).
206
+
207
+ ## Acknowledgements
208
+
209
+ - [VITS2 (daniilrobnikov)](https://github.com/daniilrobnikov/vits2)
210
+ - [Bert-VITS2](https://github.com/fishaudio/Bert-VITS2)
211
+ - [GPT VITS](https://github.com/innnky/gpt-vits)
212
+ - [MQTTS](https://github.com/b04901014/MQTTS)
213
+ - [GPT Fast](https://github.com/pytorch-labs/gpt-fast)
214
+ - [Transformers](https://github.com/huggingface/transformers)
215
+ - [GPT-SoVITS](https://github.com/RVC-Boss/GPT-SoVITS)
docs/en/inference.md ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Inference
2
+
3
+ Inference support command line, HTTP API and web UI.
4
+
5
+ !!! note
6
+ Overall, reasoning consists of several parts:
7
+
8
+ 1. Encode a given ~10 seconds of voice using VQGAN.
9
+ 2. Input the encoded semantic tokens and the corresponding text into the language model as an example.
10
+ 3. Given a new piece of text, let the model generate the corresponding semantic tokens.
11
+ 4. Input the generated semantic tokens into VITS / VQGAN to decode and generate the corresponding voice.
12
+
13
+ ## Command Line Inference
14
+
15
+ Download the required `vqgan` and `llama` models from our Hugging Face repository.
16
+
17
+ ```bash
18
+ huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
19
+ ```
20
+
21
+ ### 1. Generate prompt from voice:
22
+
23
+ !!! note
24
+ If you plan to let the model randomly choose a voice timbre, you can skip this step.
25
+
26
+ ```bash
27
+ python tools/vqgan/inference.py \
28
+ -i "paimon.wav" \
29
+ --checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth"
30
+ ```
31
+
32
+ You should get a `fake.npy` file.
33
+
34
+ ### 2. Generate semantic tokens from text:
35
+
36
+ ```bash
37
+ python tools/llama/generate.py \
38
+ --text "The text you want to convert" \
39
+ --prompt-text "Your reference text" \
40
+ --prompt-tokens "fake.npy" \
41
+ --checkpoint-path "checkpoints/fish-speech-1.5" \
42
+ --num-samples 2 \
43
+ --compile
44
+ ```
45
+
46
+ This command will create a `codes_N` file in the working directory, where N is an integer starting from 0.
47
+
48
+ !!! note
49
+ You may want to use `--compile` to fuse CUDA kernels for faster inference (~30 tokens/second -> ~500 tokens/second).
50
+ Correspondingly, if you do not plan to use acceleration, you can comment out the `--compile` parameter.
51
+
52
+ !!! info
53
+ For GPUs that do not support bf16, you may need to use the `--half` parameter.
54
+
55
+ ### 3. Generate vocals from semantic tokens:
56
+
57
+ #### VQGAN Decoder
58
+
59
+ ```bash
60
+ python tools/vqgan/inference.py \
61
+ -i "codes_0.npy" \
62
+ --checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth"
63
+ ```
64
+
65
+ ## HTTP API Inference
66
+
67
+ We provide a HTTP API for inference. You can use the following command to start the server:
68
+
69
+ ```bash
70
+ python -m tools.api_server \
71
+ --listen 0.0.0.0:8080 \
72
+ --llama-checkpoint-path "checkpoints/fish-speech-1.5" \
73
+ --decoder-checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth" \
74
+ --decoder-config-name firefly_gan_vq
75
+ ```
76
+
77
+ > If you want to speed up inference, you can add the `--compile` parameter.
78
+
79
+ After that, you can view and test the API at http://127.0.0.1:8080/.
80
+
81
+ Below is an example of sending a request using `tools/api_client.py`.
82
+
83
+ ```bash
84
+ python -m tools.api_client \
85
+ --text "Text to be input" \
86
+ --reference_audio "Path to reference audio" \
87
+ --reference_text "Text content of the reference audio" \
88
+ --streaming True
89
+ ```
90
+
91
+ The above command indicates synthesizing the desired audio according to the reference audio information and returning it in a streaming manner.
92
+
93
+ The following example demonstrates that you can use **multiple** reference audio paths and reference audio texts at once. Separate them with spaces in the command.
94
+
95
+ ```bash
96
+ python -m tools.api_client \
97
+ --text "Text to input" \
98
+ --reference_audio "reference audio path1" "reference audio path2" \
99
+ --reference_text "reference audio text1" "reference audio text2"\
100
+ --streaming False \
101
+ --output "generated" \
102
+ --format "mp3"
103
+ ```
104
+
105
+ The above command synthesizes the desired `MP3` format audio based on the information from multiple reference audios and saves it as `generated.mp3` in the current directory.
106
+
107
+ You can also use `--reference_id` (only one can be used) instead of `--reference-audio` and `--reference_text`, provided that you create a `references/<your reference_id>` folder in the project root directory, which contains any audio and annotation text.
108
+ The currently supported reference audio has a maximum total duration of 90 seconds.
109
+
110
+
111
+ !!! info
112
+ To learn more about available parameters, you can use the command `python -m tools.api_client -h`
113
+
114
+ ## GUI Inference
115
+ [Download client](https://github.com/AnyaCoder/fish-speech-gui/releases)
116
+
117
+ ## WebUI Inference
118
+
119
+ You can start the WebUI using the following command:
120
+
121
+ ```bash
122
+ python -m tools.webui \
123
+ --llama-checkpoint-path "checkpoints/fish-speech-1.5" \
124
+ --decoder-checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth" \
125
+ --decoder-config-name firefly_gan_vq
126
+ ```
127
+ > If you want to speed up inference, you can add the `--compile` parameter.
128
+
129
+ !!! note
130
+ You can save the label file and reference audio file in advance to the `references` folder in the main directory (which you need to create yourself), so that you can directly call them in the WebUI.
131
+
132
+ !!! note
133
+ You can use Gradio environment variables, such as `GRADIO_SHARE`, `GRADIO_SERVER_PORT`, `GRADIO_SERVER_NAME` to configure WebUI.
134
+
135
+ Enjoy!
docs/en/samples.md ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Samples
2
+
3
+ ver 1.4
4
+
5
+ ## Credits
6
+ Special thanks to [Seed-TTS (2024)](https://bytedancespeech.github.io/seedtts_tech_report/) for providing the evaluation data for demonstration.
7
+
8
+ All prompt audio is from the Seed-TTS effect demo page, and all generated audio is from the first generation of fish-speech version 1.4.
9
+
10
+ ## Zero-shot In-context Learning
11
+ <table>
12
+ <thead>
13
+ <tr>
14
+ <th style="vertical-align : middle;text-align: center">Language </th>
15
+ <th style="vertical-align : middle;text-align: center">Prompt </th>
16
+ <th style="vertical-align : middle;text-align: center">Same Language Generation</th>
17
+ <th style="vertical-align : middle;text-align: center">Cross-linugal Generation</th>
18
+ </tr>
19
+ </thead>
20
+ <tbody>
21
+ <tr>
22
+ <td style="vertical-align : middle;text-align:center;" rowspan="3">EN</td>
23
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/prompts/4245145269330795065.wav" autoplay="">Your browser does not support the audio element.</audio></td>
24
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/4245145269330795065/same-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences.</td>
25
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/4245145269330795065/cross-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>顿时,气氛变得沉郁起来。乍看之下,一切的困扰仿佛都围绕在我身边。我皱着眉头,感受着那份压力,但我知道我不能放弃,不能认输。于是,我深吸一口气,心底的声音告诉我:“无论如何,都要冷静下来,重新开始。”</td>
26
+ </tr>
27
+ <tr>
28
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/prompts/2486365921931244890.wav" autoplay="">Your browser does not support the audio element.</audio></td>
29
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/2486365921931244890/same-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>Dealing with family secrets is never easy. Yet, sometimes, omission is a form of protection, intending to safeguard some from the harsh truths. One day, I hope you understand the reasons behind my actions. Until then, Anna, please, bear with me.</td>
30
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/2486365921931244890/cross-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>处理家庭秘密从来都不是一件容易的事。然而,有时候,隐瞒是一种保护形式,旨在保护一些人免受残酷的真相伤害。有一天,我希望你能理解我行为背后的原因。在那之前,安娜,请容忍我。</td>
31
+ </tr>
32
+ <tr>
33
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/prompts/-9102975986427238220.wav" autoplay="">Your browser does not support the audio element.</audio></td>
34
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/-9102975986427238220/same-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>The combinations of different textures and flavors create a perfect harmony. The succulence of the steak, the tartness of the cranberries, the crunch of pine nuts, and creaminess of blue cheese make it a truly delectable delight. Enjoy your culinary adventure!</td>
35
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/-9102975986427238220/cross-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>听着你的话,我心里五味杂陈。虽然我愿意一直在你身边,承担一切不幸,但我知道只有让你自己面对,才能真正让你变得更强大。所以,你要记得,无论面对何种困难,都请你坚强,我会在心里一直支持你的。</td>
36
+ </tr>
37
+ <tr>
38
+ <td style="vertical-align : middle;text-align:center;" rowspan="3">ZH</td>
39
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/prompts/2648200402409733590.wav" autoplay="">Your browser does not support the audio element.</audio></td>
40
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/2648200402409733590/same-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"</td>
41
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/2648200402409733590/cross-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>Suddenly, there was a burst of laughter beside me. I looked at them, stood up straight with high spirit, shook the slightly fleshy arms, and smiled lightly, saying, "The flesh on my body is to hide my bursting charm. Otherwise, wouldn't it scare you?"</td>
42
+ </tr>
43
+ <tr>
44
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/prompts/8913957783621352198.wav" autoplay="">Your browser does not support the audio element.</audio></td>
45
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/8913957783621352198/same-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>他闭上眼睛,期望这一切都能过去。然而,当他再次睁开眼睛,眼前的景象让他不禁倒吸一口气。雾气中出现的禁闭岛,陌生又熟悉,充满未知的危险。他握紧拳头,心知他的生活即将发生翻天覆地的改变。</td>
46
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/8913957783621352198/cross-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>He closed his eyes, expecting that all of this could pass. However, when he opened his eyes again, the sight in front of him made him couldn't help but take a deep breath. The closed island that appeared in the fog, strange and familiar, was full of unknown dangers. He tightened his fist, knowing that his life was about to undergo earth-shaking changes. </td>
47
+ </tr>
48
+ <tr>
49
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/prompts/2631296891109983590.wav" autoplay="">Your browser does not support the audio element.</audio></td>
50
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/2631296891109983590/same-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>顿时,气氛变得沉郁起来。乍看之下,一切的困扰仿佛都围绕在我身边。我皱着眉头,感受着那份压力,但我知道我不能放弃,不能认输。于是,我深吸一口气,心底的声音告诉我:“无论如何,都要冷静下来,重新开始。”</td>
51
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/2631296891109983590/cross-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>Suddenly, the atmosphere became gloomy. At first glance, all the troubles seemed to surround me. I frowned, feeling that pressure, but I know I can't give up, can't admit defeat. So, I took a deep breath, and the voice in my heart told me, "Anyway, must calm down and start again."</td>
52
+ </tr>
53
+ </tbody>
54
+ </table>
55
+
56
+
57
+
58
+ ## Speaker Fine-tune
59
+
60
+ <table>
61
+ <thead>
62
+ <tr>
63
+ <th style="text-align: center"> </th>
64
+ <th style="text-align: center">Text </th>
65
+ <th style="text-align: center">Generated</th>
66
+ </tr>
67
+ </thead>
68
+ <tbody>
69
+ <tr>
70
+ <td style="vertical-align : middle;text-align:center;" rowspan="3">Speaker1</td>
71
+ <td style="vertical-align : middle;text-align:center;">好呀,哈哈哈哈哈,喜欢笑的人运气都不会差哦,希望你每天笑口常开~</td>
72
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/fine-tune/prompts/4781135337205789117.wav" autoplay="">Your browser does not support the audio element.</audio></td>
73
+ </tr>
74
+ <tr>
75
+ <td style="vertical-align : middle;text-align:center;">哇!恭喜你中了大乐透,八百万可真不少呢!有什么特别的计划或想法吗?</td>
76
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/fine-tune/4781135337205789117/fish_1_to_2.wav" autoplay="">Your browser does not support the audio element.</audio></td>
77
+ </tr>
78
+ <tr>
79
+ <td style="vertical-align : middle;text-align:center;">哼,你这么问是想请本小姐吃饭吗?如果对象是你的话,那也不是不可以。</td>
80
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/fine-tune/4781135337205789117/fish_1_to_3.wav" autoplay="">Your browser does not support the audio element.</audio></td>
81
+ </tr>
82
+ <tr>
83
+ <td style="vertical-align : middle;text-align:center;" rowspan="3">Speaker2</td>
84
+ <td style="vertical-align : middle;text-align:center;">是呀,他还想换个地球仪哈哈哈,看来给你积累了一些快乐值了,你还想不想再听一个其他的笑话呀?</td>
85
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/fine-tune/prompts/-1325430967143158944.wav" autoplay="">Your browser does not support the audio element.</audio></td>
86
+ </tr>
87
+ <tr>
88
+ <td style="vertical-align : middle;text-align:center;">嘿嘿,你是不是也想拥有甜甜的恋爱呢?《微微一笑很倾城》是你的不二选择,男女主是校花校草类型,他们通过游戏结识,再到两人见面,全程没有一点误会,真的齁甜,想想都忍不住“姨妈笑”~</td>
89
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/fine-tune/-1325430967143158944/fish_1_to_2.wav" autoplay="">Your browser does not support the audio element.</audio></td>
90
+ </tr>
91
+ <tr>
92
+ <td style="vertical-align : middle;text-align:center;">小傻瓜,嗯……算是个很可爱很亲切的名字,有点“独特”哦,不过我有些好奇,你为什么会给我选这个昵称呢?</td>
93
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/fine-tune/-1325430967143158944/fish_1_to_3.wav" autoplay="">Your browser does not support the audio element.</audio></td>
94
+ </tr>
95
+ </tbody>
96
+ </table>
97
+ <br>
98
+
99
+ ## Content Editing
100
+
101
+ <table>
102
+ <thead>
103
+ <tr><th style="text-align: center">Language</th>
104
+ <th style="text-align: center">Original Text</th>
105
+ <th style="text-align: center">Original Audio</th>
106
+ <th style="text-align: center">Target Text</th>
107
+ <th style="text-align: center">Edited Audio</th>
108
+ </tr></thead>
109
+ <tbody>
110
+ <tr>
111
+ <td style="vertical-align : middle;text-align:center;" rowspan="2">EN</td>
112
+ <td style="vertical-align : middle;text-align:center;">They can't order me to stop dreaming. If you dream a thing more than once, it's sure to come true. Have faith in your dreams, and someday your rainbow will come shining through.</td>
113
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/content-edit/prompts/2372076002032794455.wav" autoplay="">Your browser does not support the audio element.</audio></td>
114
+ <td style="vertical-align : middle;text-align:center;">They can't <b>require</b> me to stop <b>imagining.</b> If you envision a thing more than once, it's <b>bound</b> to come <b>about</b>. Have <b>trust</b> in your <b>visions</b>, and someday your <b>radiance</b> will come <b>beaming</b> through.</td>
115
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/content-edit/2372076002032794455/edit-fish.wav" autoplay="">Your browser does not support the audio element.</audio></td>
116
+ </tr>
117
+ <tr>
118
+ <td style="vertical-align : middle;text-align:center;">Are you familiar with it? Slice the steak and place the strips on top, then garnish with the dried cranberries, pine nuts, and blue cheese. I wonder how people rationalise the decision?</td>
119
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/content-edit/prompts/3347127306902202498.wav" autoplay="">Your browser does not support the audio element.</audio></td>
120
+ <td style="vertical-align : middle;text-align:center;">Are you <b>acquainted</b> with it? <b>Cut the pork</b> and place the strips on top, then garnish with the dried <b>cherries, almonds,</b> and <b>feta</b> cheese. I <b>query</b> how people <b>justify</b> the <b>choice?</b></td>
121
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/content-edit/3347127306902202498/edit-fish.wav" autoplay="">Your browser does not support the audio element.</audio></td>
122
+ </tr>
123
+ <tr>
124
+ <td style="vertical-align : middle;text-align:center;" rowspan="2">ZH</td>
125
+ <td style="vertical-align : middle;text-align:center;">自古以来,庸君最怕党政了,可圣君他就不怕,不但不怕,反能利用。要我说,你就让明珠索额图互相争宠,只要你心里明白,左右逢源,你就能立于不败之地。</td>
126
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/content-edit/prompts/1297014176484007082.wav" autoplay="">Your browser does not support the audio element.</audio></td>
127
+ <td style="vertical-align : middle;text-align:center;"><b>从古至今</b>,庸君最怕<b>朝纲了</b>,可<b>明</b>君他就不怕,不但不怕,反能<b>借助</b>。要我说,你就让<b>李四张三</b>互相争宠,只要你心里<b>清楚</b>,左右<b>周旋</b>,你就能<b>处</b>于不败之<b>境</b>。</td>
128
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/content-edit/1297014176484007082/edit-fish.wav" autoplay="">Your browser does not support the audio element.</audio></td>
129
+ </tr>
130
+ <tr>
131
+ <td style="vertical-align : middle;text-align:center;">对,这就是我,万人敬仰的太乙真人,虽然有点婴儿肥,但也掩不住我逼人的帅气。</td>
132
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/content-edit/prompts/-40165564411515767.wav" autoplay="">Your browser does not support the audio element.</audio></td>
133
+ <td style="vertical-align : middle;text-align:center;">对,这就是我,<b>众人尊崇</b>的太<b>白金星</b>,虽然有点<b>娃娃脸</b>,但也<b>遮</b>不住我<b>迷人</b>的<b>魅力。</b></td>
134
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/content-edit/-40165564411515767/edit-fish.wav" autoplay="">Your browser does not support the audio element.</audio></td>
135
+ </tr>
136
+ </tbody>
137
+ </table>
docs/en/start_agent.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Start Agent
2
+
3
+ ## Requirements
4
+
5
+ - GPU memory: At least 8GB(under quanization), 16GB or more is recommanded.
6
+ - Disk usage: 10GB
7
+
8
+ ## Download Model
9
+
10
+ You can get the model by:
11
+
12
+ ```bash
13
+ huggingface-cli download fishaudio/fish-agent-v0.1-3b --local-dir checkpoints/fish-agent-v0.1-3b
14
+ ```
15
+
16
+ Put them in the 'checkpoints' folder.
17
+
18
+ You also need the fish-speech model which you can download instructed by [inference](inference.md).
19
+
20
+ So there will be 2 folder in the checkpoints.
21
+
22
+ The `checkpoints/fish-speech-1.4` and `checkpoints/fish-agent-v0.1-3b`
23
+
24
+ ## Environment Prepare
25
+
26
+ If you already have Fish-speech, you can directly use by adding the follow instruction:
27
+ ```bash
28
+ pip install cachetools
29
+ ```
30
+
31
+ !!! note
32
+ Please use the Python version below 3.12 for compile.
33
+
34
+ If you don't have, please use the below commands to build yout environment:
35
+
36
+ ```bash
37
+ sudo apt-get install portaudio19-dev
38
+
39
+ pip install -e .[stable]
40
+ ```
41
+
42
+ ## Launch The Agent Demo.
43
+
44
+ To build fish-agent, please use the command below under the main folder:
45
+
46
+ ```bash
47
+ python -m tools.api_server --llama-checkpoint-path checkpoints/fish-agent-v0.1-3b/ --mode agent --compile
48
+ ```
49
+
50
+ The `--compile` args only support Python < 3.12 , which will greatly speed up the token generation.
51
+
52
+ It won't compile at once (remember).
53
+
54
+ Then open another terminal and use the command:
55
+
56
+ ```bash
57
+ python -m tools.e2e_webui
58
+ ```
59
+
60
+ This will create a Gradio WebUI on the device.
61
+
62
+ When you first use the model, it will come to compile (if the `--compile` is True) for a short time, so please wait with patience.
63
+
64
+ ## Gradio Webui
65
+ <p align="center">
66
+ <img src="../assets/figs/agent_gradio.png" width="75%">
67
+ </p>
68
+
69
+ Have a good time!
70
+
71
+ ## Performance
72
+
73
+ Under our test, a 4060 laptop just barely runs, but is very stretched, which is only about 8 tokens/s. The 4090 is around 95 tokens/s under compile, which is what we recommend.
74
+
75
+ # About Agent
76
+
77
+ The demo is an early alpha test version, the inference speed needs to be optimised, and there are a lot of bugs waiting to be fixed. If you've found a bug or want to fix it, we'd be very happy to receive an issue or a pull request.
docs/ja/finetune.md ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 微調整
2
+
3
+ 明らかに、このページを開いたとき、few-shot 事前トレーニングモデルのパフォーマンスに満足していなかったことでしょう。データセット上でのパフォーマンスを向上させるためにモデルを微調整したいと考えています。
4
+
5
+ 現在のバージョンでは、「LLAMA」部分のみを微調整する必要があります。
6
+
7
+ ## LLAMAの微調整
8
+ ### 1. データセットの準備
9
+
10
+ ```
11
+ .
12
+ ├── SPK1
13
+ │ ├── 21.15-26.44.lab
14
+ │ ├── 21.15-26.44.mp3
15
+ │ ├── 27.51-29.98.lab
16
+ │ ├── 27.51-29.98.mp3
17
+ │ ├── 30.1-32.71.lab
18
+ │ └── 30.1-32.71.mp3
19
+ └── SPK2
20
+ ├── 38.79-40.85.lab
21
+ └── 38.79-40.85.mp3
22
+ ```
23
+
24
+ データセットを上記の形式に変換し、「data」ディレクトリに配置する必要があります。音声ファイルの拡張子は「.mp3」、「.wav」、または「.flac」にすることができ、注釈ファイルの拡張子は「.lab」にする必要があります。
25
+
26
+ !!! info
27
+ 標準ファイル `.lab` には、音声の転写テキストのみを含め、特別なフォーマットは必要ありません。例えば、`hi.mp3` で「こんにちは、さようなら」と言っている場合、`hi.lab` ファイルには「こんにちは、さようなら」という一行のテキストを含めるだけです。
28
+
29
+ !!! warning
30
+ データセットにラウドネス正規化を適用することをお勧めします。これを行うには、[fish-audio-preprocess](https://github.com/fishaudio/audio-preprocess) を使用できます。
31
+
32
+ ```bash
33
+ fap loudness-norm data-raw data --clean
34
+ ```
35
+
36
+
37
+ ### 2. セマンティックトークンのバッチ抽出
38
+
39
+ VQGANの重みをダウンロードしたことを確認してください。まだダウンロードしていない場合は、次のコマンドを実行してください。
40
+
41
+ ```bash
42
+ huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
43
+ ```
44
+
45
+ 次に、次のコマンドを実行してセマンティックトークンを抽出できます。
46
+
47
+ ```bash
48
+ python tools/vqgan/extract_vq.py data \
49
+ --num-workers 1 --batch-size 16 \
50
+ --config-name "firefly_gan_vq" \
51
+ --checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth"
52
+ ```
53
+
54
+ !!! note
55
+ `--num-workers` と `--batch-size` を調整して抽出速度を上げることができますが、GPUメモリの制限を超えないようにしてください。
56
+ VITS形式の場合、`--filelist xxx.list` を使用してファイルリストを指定できます。
57
+
58
+ このコマンドは、`data`ディレクトリに`.npy`ファイルを作成します。以下のように表示されます。
59
+
60
+ ```
61
+ .
62
+ ├── SPK1
63
+ │ ├── 21.15-26.44.lab
64
+ │ ├── 21.15-26.44.mp3
65
+ │ ├── 21.15-26.44.npy
66
+ │ ├── 27.51-29.98.lab
67
+ │ ├── 27.51-29.98.mp3
68
+ │ ├── 27.51-29.98.npy
69
+ │ ├── 30.1-32.71.lab
70
+ │ ├── 30.1-32.71.mp3
71
+ │ └── 30.1-32.71.npy
72
+ └── SPK2
73
+ ├── 38.79-40.85.lab
74
+ ├── 38.79-40.85.mp3
75
+ └── 38.79-40.85.npy
76
+ ```
77
+
78
+ ### 3. データセットをprotobufにパックする
79
+
80
+ ```bash
81
+ python tools/llama/build_dataset.py \
82
+ --input "data" \
83
+ --output "data/protos" \
84
+ --text-extension .lab \
85
+ --num-workers 16
86
+ ```
87
+
88
+ コマンドの実行が完了すると、`data`ディレクトリに`quantized-dataset-ft.protos`ファイルが表示されます。
89
+
90
+ ### 4. 最後に、LoRAを使用して微調整する
91
+
92
+ 同様に、`LLAMA`の重みをダウンロードしたことを確認してください。まだダウンロードしていない場合は、次のコマンドを実行してください。
93
+
94
+ ```bash
95
+ huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
96
+ ```
97
+
98
+ 最後に、次のコマンドを実行して微調整を開始できます。
99
+
100
+ ```bash
101
+ python fish_speech/train.py --config-name text2semantic_finetune \
102
+ project=$project \
103
+ [email protected]_config=r_8_alpha_16
104
+ ```
105
+
106
+ !!! note
107
+ `fish_speech/configs/text2semantic_finetune.yaml` を変更して、`batch_size`、`gradient_accumulation_steps` などのトレーニングパラメータを変更し、GPUメモリに適合させることができます。
108
+
109
+ !!! note
110
+ Windowsユーザーの場合、`trainer.strategy.process_group_backend=gloo` を使用して `nccl` の問題を回避できます。
111
+
112
+ トレーニングが完了したら、[推論](inference.md)セクションを参照し、音声を生成します。
113
+
114
+ !!! info
115
+ デフォルトでは、モデルは話者の発話パターンのみを学習し、音色は学習しません。音色の安定性を確保するためにプロンプトを使用する必要があります。
116
+ 音色を学習したい場合は、トレーニングステップ数を増やすことができますが、これにより過学習が発生する可能性があります。
117
+
118
+ トレーニングが完了したら、推論を行う前にLoRAの重みを通常の重みに変換する必要があります。
119
+
120
+ ```bash
121
+ python tools/llama/merge_lora.py \
122
+ --lora-config r_8_alpha_16 \
123
+ --base-weight checkpoints/fish-speech-1.5 \
124
+ --lora-weight results/$project/checkpoints/step_000000010.ckpt \
125
+ --output checkpoints/fish-speech-1.5-yth-lora/
126
+ ```
127
+ !!! note
128
+ 他のチェックポイントを試すこともできます。要件を満たす最も早いチェックポイントを使用することをお勧めします。これらは通常、分布外(OOD)データでより良いパフォーマンスを発揮します。
docs/ja/index.md ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Fish Speech の紹介
2
+
3
+ <div>
4
+ <a target="_blank" href="https://discord.gg/Es5qTB9BcN">
5
+ <img alt="Discord" src="https://img.shields.io/discord/1214047546020728892?color=%23738ADB&label=Discord&logo=discord&logoColor=white&style=flat-square"/>
6
+ </a>
7
+ <a target="_blank" href="http://qm.qq.com/cgi-bin/qm/qr?_wv=1027&k=jCKlUP7QgSm9kh95UlBoYv6s1I-Apl1M&authKey=xI5ttVAp3do68IpEYEalwXSYZFdfxZSkah%2BctF5FIMyN2NqAa003vFtLqJyAVRfF&noverify=0&group_code=593946093">
8
+ <img alt="QQ" src="https://img.shields.io/badge/QQ Group-%2312B7F5?logo=tencent-qq&logoColor=white&style=flat-square"/>
9
+ </a>
10
+ <a target="_blank" href="https://hub.docker.com/r/fishaudio/fish-speech">
11
+ <img alt="Docker" src="https://img.shields.io/docker/pulls/fishaudio/fish-speech?style=flat-square&logo=docker"/>
12
+ </a>
13
+ </div>
14
+
15
+ !!! warning
16
+ 私たちは、コードベースの違法な使用について一切の責任を負いません。お住まいの地域の DMCA(デジタルミレニアム著作権法)およびその他の関連法を参照してください。 <br/>
17
+ このコードベースとモデルは、CC-BY-NC-SA-4.0 ライセンス下でリリースされています。
18
+
19
+ <p align="center">
20
+ <img src="../assets/figs/diagram.png" width="75%">
21
+ </p>
22
+
23
+ ## 要件
24
+
25
+ - GPU メモリ: 4GB(推論用)、8GB(ファインチューニング用)
26
+ - システム: Linux、Windows
27
+
28
+ ## Windowsセットアップ
29
+
30
+ プロフェッショナルなWindowsユーザーは、WSL2またはDockerを使用してコードベースを実行することを検討してください。
31
+
32
+ ```bash
33
+ # Python 3.10の仮想環境を作成(virtualenvも使用可能)
34
+ conda create -n fish-speech python=3.10
35
+ conda activate fish-speech
36
+
37
+ # PyTorchをインストール
38
+ pip3 install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu121
39
+
40
+ # fish-speechをインストール
41
+ pip3 install -e .
42
+
43
+ # (アクセラレーションを有効にする) triton-windowsをインストール
44
+ pip install https://github.com/AnyaCoder/fish-speech/releases/download/v0.1.0/triton_windows-0.1.0-py3-none-any.whl
45
+ ```
46
+
47
+ 非プロフェッショナルなWindowsユーザーは、Linux環境なしでプロジェクトを実行するための以下の基本的な方法を検討できます(モデルコンパイル機能、つまり`torch.compile`を使用可能):
48
+
49
+ 1. プロジェクトパッケージを解凍する。
50
+ 2. `install_env.bat`をクリックして環境をインストールする。
51
+ 3. コンパイルアクセラレーションを有効にしたい場合は、次のステップに従ってください:
52
+ 1. 以下のリンクからLLVMコンパイラをダウンロード:
53
+ - [LLVM-17.0.6(公式サイトのダウンロード)](https://huggingface.co/fishaudio/fish-speech-1/resolve/main/LLVM-17.0.6-win64.exe?download=true)
54
+ - [LLVM-17.0.6(ミラーサイトのダウンロード)](https://hf-mirror.com/fishaudio/fish-speech-1/resolve/main/LLVM-17.0.6-win64.exe?download=true)
55
+ - `LLVM-17.0.6-win64.exe`をダウンロードした後、ダブルクリックしてインストールし、適切なインストール場所を選択し、最も重要なのは`Add Path to Current User`オプションを選択して環境変数を追加することです。
56
+ - インストールが完了したことを確認する。
57
+ 2. 欠落している .dll の問題を解決するため、Microsoft Visual C++ Redistributable をダウンロードしてインストールする:
58
+ - [MSVC++ 14.40.33810.0 ダウンロード](https://aka.ms/vs/17/release/vc_redist.x64.exe)
59
+ 3. Visual Studio Community Editionをダウンロードして、MSVC++ビルドツールを取得し、LLVMのヘッダーファイルの依存関係を解決する:
60
+ - [Visual Studio ダウンロード](https://visualstudio.microsoft.com/ja/downloads/)
61
+ - Visual Studio Installerをインストールした後、Visual Studio Community 2022をダウンロード。
62
+ - 下記のように、`Modify`ボタンをクリックし、`C++によるデスクトップ開発`オプションを選択してダウンロード。
63
+ - <img src="../assets/figs/VS_1.jpg"/>
64
+ 4. [CUDA Toolkit 12.x](https://developer.nvidia.com/cuda-12-1-0-download-archive?target_os=Windows&target_arch=x86_64)をダウンロードしてインストールする。
65
+ 4. `start.bat`をダブルクリックして、トレーニング推論WebUI管理インターフェースを開きます。必要に応じて、以下に示すように`API_FLAGS`を修正できます。
66
+
67
+
68
+ !!! info "オプション"
69
+ 推論WebUIを起動しますか?
70
+ プロジェクトのルートディレクトリにある `API_FLAGS.txt` ファイルを編集し、最初の3行を次のように変更します:
71
+ ```
72
+ --infer
73
+ # --api
74
+ # --listen ...
75
+ ...
76
+ ```
77
+
78
+ !!! info "オプション"
79
+ APIサーバーを起動しますか?
80
+ プロジェクトのルートディレクトリにある `API_FLAGS.txt` ファイルを編集し、最初の3行を次のように変更します:
81
+ ```
82
+ # --infer
83
+ --api
84
+ --listen ...
85
+ ...
86
+ ```
87
+
88
+ !!! info "オプション"
89
+ `run_cmd.bat` をダブルクリックして、このプロジェクトの conda/python コマンドライン環境に入ります。
90
+
91
+
92
+
93
+ ## Linux セットアップ
94
+
95
+ 詳細については、[pyproject.toml](../../pyproject.toml) を参照してください。
96
+ ```bash
97
+ # python 3.10の仮想環境を作成します。virtualenvも使用できます。
98
+ conda create -n fish-speech python=3.10
99
+ conda activate fish-speech
100
+
101
+ # pytorchをインストールします。
102
+ pip3 install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1
103
+
104
+ # (Ubuntu / Debianユーザー) sox + ffmpegをインストールします。
105
+ apt install libsox-dev ffmpeg
106
+
107
+ # (Ubuntu / Debianユーザー) pyaudio をインストールします。
108
+ apt install build-essential \
109
+ cmake \
110
+ libasound-dev \
111
+ portaudio19-dev \
112
+ libportaudio2 \
113
+ libportaudiocpp0
114
+
115
+ # fish-speechをインストールします。
116
+ pip3 install -e .[stable]
117
+
118
+ ```
119
+
120
+ ## macos setup
121
+
122
+ 推論をMPS上で行う場合は、`--device mps`フラグを追加してください。
123
+ 推論速度の比較は[こちらのPR](https://github.com/fishaudio/fish-speech/pull/461#issuecomment-2284277772)を参考にしてください。
124
+
125
+ !!! warning
126
+ AppleSiliconのデバイスでは、compileオプションに正式に対応していませんので、推論速度が向上する保証はありません。
127
+
128
+ ```bash
129
+ # create a python 3.10 virtual environment, you can also use virtualenv
130
+ conda create -n fish-speech python=3.10
131
+ conda activate fish-speech
132
+ # install pytorch
133
+ pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1
134
+ # install fish-speech
135
+ pip install -e .[stable]
136
+ ```
137
+
138
+ ## Docker セットアップ
139
+
140
+ 1. NVIDIA Container Toolkit のインストール:
141
+
142
+ Docker で GPU を使用してモデルのトレーニングと推論を行うには、NVIDIA Container Toolkit をインストールする必要があります:
143
+
144
+ Ubuntu ユーザーの場合:
145
+
146
+ ```bash
147
+ # リポジトリの追加
148
+ curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
149
+ && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
150
+ sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
151
+ sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
152
+ # nvidia-container-toolkit のインストール
153
+ sudo apt-get update
154
+ sudo apt-get install -y nvidia-container-toolkit
155
+ # Docker サービスの再起動
156
+ sudo systemctl restart docker
157
+ ```
158
+
159
+ 他の Linux ディストリビューションを使用している場合は、以下のインストールガイドを参照してください:[NVIDIA Container Toolkit Install-guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)。
160
+
161
+ 2. fish-speech イメージのプルと実行
162
+
163
+ ```shell
164
+ # イメージのプル
165
+ docker pull fishaudio/fish-speech:latest-dev
166
+ # イメージの実行
167
+ docker run -it \
168
+ --name fish-speech \
169
+ --gpus all \
170
+ -p 7860:7860 \
171
+ fishaudio/fish-speech:latest-dev \
172
+ zsh
173
+ # 他のポートを使用する場合は、-p パラメータを YourPort:7860 に変更してください
174
+ ```
175
+
176
+ 3. モデルの依存関係のダウンロード
177
+
178
+ Docker コンテナ内のターミナルにいることを確認し、huggingface リポジトリから必要な `vqgan` と `llama` モデルをダウンロードします。
179
+
180
+ ```bash
181
+ huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
182
+ ```
183
+
184
+ 4. 環境変数の設定と WebUI へのアクセス
185
+
186
+ Docker コンテナ内のターミナルで、`export GRADIO_SERVER_NAME="0.0.0.0"` と入力して、外部から Docker 内の gradio サービスにアクセスできるようにします。
187
+ 次に、Docker コンテナ内のターミナルで `python tools/run_webui.py` と入力して WebUI サービスを起動します。
188
+
189
+ WSL または MacOS の場合は、[http://localhost:7860](http://localhost:7860) にアクセスして WebUI インターフェースを開くことができます。
190
+
191
+ サーバーにデプロイしている場合は、localhost をサーバーの IP に置き換えてください。
192
+
193
+ ## 変更履歴
194
+
195
+ - 2024/09/10: Fish-Speech を Ver.1.4 に更新し、データセットのサイズを増加させ、quantizer n_groups を 4 から 8 に変更しました。
196
+ - 2024/07/02: Fish-Speech を Ver.1.2 に更新し、VITS デコーダーを削除し、ゼロショット能力を大幅に強化しました。
197
+ - 2024/05/10: Fish-Speech を Ver.1.1 に更新し、VITS デコーダーを実装して WER を���少させ、音色の類似性を向上させました。
198
+ - 2024/04/22: Fish-Speech Ver.1.0 を完成させ、VQGAN および LLAMA モデルを大幅に修正しました。
199
+ - 2023/12/28: `lora`微調整サポートを追加しました。
200
+ - 2023/12/27: `gradient checkpointing`、`causual sampling`、および`flash-attn`サポートを追加しました。
201
+ - 2023/12/19: webui および HTTP API を更新しました。
202
+ - 2023/12/18: 微調整ドキュメントおよび関連例を更新しました。
203
+ - 2023/12/17: `text2semantic`モデルを更新し、自由音素モードをサポートしました。
204
+ - 2023/12/13: ベータ版をリリースし、VQGAN モデルおよび LLAMA に基づく言語モデル(音素のみサポート)を含みます。
205
+
206
+ ## 謝辞
207
+
208
+ - [VITS2 (daniilrobnikov)](https://github.com/daniilrobnikov/vits2)
209
+ - [Bert-VITS2](https://github.com/fishaudio/Bert-VITS2)
210
+ - [GPT VITS](https://github.com/innnky/gpt-vits)
211
+ - [MQTTS](https://github.com/b04901014/MQTTS)
212
+ - [GPT Fast](https://github.com/pytorch-labs/gpt-fast)
213
+ - [Transformers](https://github.com/huggingface/transformers)
214
+ - [GPT-SoVITS](https://github.com/RVC-Boss/GPT-SoVITS)
docs/ja/inference.md ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 推論
2
+
3
+ 推論は、コマンドライン、HTTP API、および Web UI をサポートしています。
4
+
5
+ !!! note
6
+ 全体として、推論は次のいくつかの部分で構成されています:
7
+
8
+ 1. VQGANを使用して、与えられた約10秒の音声をエンコードします。
9
+ 2. エンコードされたセマンティックトークンと対応するテキストを例として言語モデルに入力します。
10
+ 3. 新しいテキストが与えられた場合、モデルに対応するセマンティックトークンを生成させます。
11
+ 4. 生成されたセマンティックトークンをVITS / VQGANに入力してデコードし、対応する音声を生成します。
12
+
13
+ ## コマンドライン推論
14
+
15
+ 必要な`vqgan`および`llama`モデルを Hugging Face リポジトリからダウンロードします。
16
+
17
+ ```bash
18
+ huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
19
+ ```
20
+
21
+ ### 1. 音声からプロンプトを生成する:
22
+
23
+ !!! note
24
+ モデルにランダムに音声の音色を選ばせる場合、このステップをスキップできます。
25
+
26
+ ```bash
27
+ python tools/vqgan/inference.py \
28
+ -i "paimon.wav" \
29
+ --checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth"
30
+ ```
31
+
32
+ `fake.npy`ファイルが生成されるはずです。
33
+
34
+ ### 2. テキストからセマンティックトークンを生成する:
35
+
36
+ ```bash
37
+ python tools/llama/generate.py \
38
+ --text "変換したいテキスト" \
39
+ --prompt-text "参照テキスト" \
40
+ --prompt-tokens "fake.npy" \
41
+ --checkpoint-path "checkpoints/fish-speech-1.5" \
42
+ --num-samples 2 \
43
+ --compile
44
+ ```
45
+
46
+ このコマンドは、作業ディレクトリに`codes_N`ファイルを作成します。ここで、N は 0 から始まる整数です。
47
+
48
+ !!! note
49
+ `--compile`を使用して CUDA カーネルを融合し、より高速な推論を実現することができます(約 30 トークン/秒 -> 約 500 トークン/秒)。
50
+ それに対応して、加速を使用しない場合は、`--compile`パラメータをコメントアウトできます。
51
+
52
+ !!! info
53
+ bf16 をサポートしていない GPU の場合、`--half`パラメータを使用する必要があるかもしれません。
54
+
55
+ ### 3. セマンティックトークンから音声を生成する:
56
+
57
+ #### VQGAN デコーダー
58
+
59
+ ```bash
60
+ python tools/vqgan/inference.py \
61
+ -i "codes_0.npy" \
62
+ --checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth"
63
+ ```
64
+
65
+ ## HTTP API 推論
66
+
67
+ 推論のための HTTP API を提供しています。次のコマンドを使用してサーバーを起動できます:
68
+
69
+ ```bash
70
+ python -m tools.api_server \
71
+ --listen 0.0.0.0:8080 \
72
+ --llama-checkpoint-path "checkpoints/fish-speech-1.5" \
73
+ --decoder-checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth" \
74
+ --decoder-config-name firefly_gan_vq
75
+ ```
76
+
77
+ > 推論を高速化したい場合は、`--compile` パラメータを追加できます。
78
+
79
+ その後、`http://127.0.0.1:8080/`で API を表示およびテストできます。
80
+
81
+ 以下は、`tools/api_client.py` を使用してリクエストを送信する例です。
82
+
83
+ ```bash
84
+ python -m tools.api_client \
85
+ --text "入力するテキスト" \
86
+ --reference_audio "参照音声へのパス" \
87
+ --reference_text "参照音声テキスト" \
88
+ --streaming True
89
+ ```
90
+
91
+ 上記のコマンドは、参照音声の情報に基づいて必要な音声を合成し、ストリーミング方式で返すことを示しています。
92
+
93
+ !!! info
94
+ 使用可能なパラメータの詳細については、コマンド` python -m tools.api_client -h `を使用してください
95
+
96
+ ## WebUI 推論
97
+
98
+ 次のコマンドを使用して WebUI を起動できます:
99
+
100
+ ```bash
101
+ python -m tools.webui \
102
+ --llama-checkpoint-path "checkpoints/fish-speech-1.5" \
103
+ --decoder-checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth" \
104
+ --decoder-config-name firefly_gan_vq
105
+ ```
106
+ > 推論を高速化したい場合は、`--compile` パラメータを追加できます。
107
+
108
+ !!! note
109
+ ラベルファイルと参照音声ファイルをメインディレクトリの `references` フォルダ(自分で作成する必要があります)に事前に保存しておくことで、WebUI で直接呼び出すことができます。
110
+
111
+ !!! note
112
+ Gradio 環境変数(`GRADIO_SHARE`、`GRADIO_SERVER_PORT`、`GRADIO_SERVER_NAME`など)を使用して WebUI を構成できます。
113
+
114
+ お楽しみください!
docs/ja/samples.md ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # サンプル
2
+
3
+ v1.4デモは[こちら](https://speech.fish.audio/samples/)に更新されています
4
+
5
+ v1.2のサンプルは[Bilibili](https://www.bilibili.com/video/BV1wz421B71D/)で利用可能です。
6
+
7
+ 以下のサンプルはv1.1モデルからのものです。
8
+
9
+ ## 中国語の文1
10
+ ```
11
+ 人間灯火倒映湖中,她的渴望让静水泛起涟漪。若代价只是孤独,那就让这份愿望肆意流淌。
12
+ 流入她所注视的世间,也流入她如湖水般澄澈的目光。
13
+ ```
14
+
15
+ <table>
16
+ <thead>
17
+ <tr>
18
+ <th>話者</th>
19
+ <th>入力音声</th>
20
+ <th>合成音声</th>
21
+ </tr>
22
+ </thead>
23
+ <tbody>
24
+ <tr>
25
+ <td>ナヒーダ (原神)</td>
26
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/0_input.wav" /></td>
27
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/0_output.wav" /></td>
28
+ </tr>
29
+ <tr>
30
+ <td>鍾離 (原神)</td>
31
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/1_input.wav" /></td>
32
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/1_output.wav" /></td>
33
+ </tr>
34
+ <tr>
35
+ <td>フリナ (原神)</td>
36
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/2_input.wav" /></td>
37
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/2_output.wav" /></td>
38
+ </tr>
39
+ <tr>
40
+ <td>ランダム話者1</td>
41
+ <td> - </td>
42
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/4_output.wav" /></td>
43
+ </tr>
44
+ <tr>
45
+ <td>ランダム話者2</td>
46
+ <td> - </td>
47
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/5_output.wav" /></td>
48
+ </tr>
49
+ </tbody>
50
+ </table>
51
+
52
+
53
+ ## 中国語の文2
54
+ ```
55
+ 你们这个是什么群啊,你们这是害人不浅啊你们这个群!谁是群主,出来!真的太过分了。你们搞这个群干什么?
56
+ 我儿子每一科的成绩都不过那个平均分呐,他现在初二,你叫我儿子怎么办啊?他现在还不到高中啊?
57
+ 你们害死我儿子了!快点出来你这个群主!再这样我去报警了啊!我跟你们说你们这一帮人啊,一天到晚啊,
58
+ 搞这些什么游戏啊,动漫啊,会害死你们的,你们没有前途我跟你说。你们这九百多个人,好好学习不好吗?
59
+ 一天到晚在上网。有什么意思啊?麻烦你重视一下你们的生活的目标啊?有一点学习目标行不行?一天到晚上网是不是人啊?
60
+ ```
61
+
62
+ <table>
63
+ <thead>
64
+ <tr>
65
+ <th>話者</th>
66
+ <th>入力音声</th>
67
+ <th>合成音声</th>
68
+ </tr>
69
+ </thead>
70
+ <tbody>
71
+ <tr>
72
+ <td>ナヒーダ (原神)</td>
73
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/0_input.wav" /></td>
74
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/6_output.wav" /></td>
75
+ </tr>
76
+ <tr>
77
+ <td>ランダム話者</td>
78
+ <td> - </td>
79
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/7_output.wav" /></td>
80
+ </tr>
81
+ </tbody>
82
+ </table>
83
+
84
+
85
+ ## 中国語の文3
86
+ ```
87
+ 大家好,我是 Fish Audio 开发的开源文本转语音模型。经过十五万小时的数据训练,
88
+ 我已经能够熟练掌握中文、日语和英语,我的语言处理能力接近人类水平,声音表现形式丰富多变。
89
+ 作为一个仅有亿级参数的模型,我相信社区成员能够在个人设备上轻松运行和微调,让我成为您的私人语音助手。
90
+ ```
91
+
92
+
93
+ <table>
94
+ <thead>
95
+ <tr>
96
+ <th>話者</th>
97
+ <th>入力音声</th>
98
+ <th>合成音声</th>
99
+ </tr>
100
+ </thead>
101
+ <tbody>
102
+ <tr>
103
+ <td>ランダム話者</td>
104
+ <td> - </td>
105
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/8_output.wav" /></td>
106
+ </tr>
107
+ </tbody>
108
+ </table>
109
+
110
+ ## 英語の文1
111
+
112
+ ```
113
+ In the realm of advanced technology, the evolution of artificial intelligence stands as a
114
+ monumental achievement. This dynamic field, constantly pushing the boundaries of what
115
+ machines can do, has seen rapid growth and innovation. From deciphering complex data
116
+ patterns to driving cars autonomously, AI's applications are vast and diverse.
117
+ ```
118
+
119
+ <table>
120
+ <thead>
121
+ <tr>
122
+ <th>話者</th>
123
+ <th>入力音声</th>
124
+ <th>合成音声</th>
125
+ </tr>
126
+ </thead>
127
+ <tbody>
128
+ <tr>
129
+ <td>ランダム話者1</td>
130
+ <td> - </td>
131
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/en/0_output.wav" /></td>
132
+ </tr>
133
+ <tr>
134
+ <td>ランダム話者2</td>
135
+ <td> - </td>
136
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/en/1_output.wav" /></td>
137
+ </tr>
138
+ </tbody>
139
+ </table>
140
+
141
+ ## 英語の文2
142
+ ```
143
+ Hello everyone, I am an open-source text-to-speech model developed by
144
+ Fish Audio. After training with 150,000 hours of data, I have become proficient
145
+ in Chinese, Japanese, and English, and my language processing abilities
146
+ are close to human level. My voice is capable of a wide range of expressions.
147
+ As a model with only hundreds of millions of parameters, I believe community
148
+ members can easily run and fine-tune me on their personal devices, allowing
149
+ me to serve as your personal voice assistant.
150
+ ```
151
+
152
+ <table>
153
+ <thead>
154
+ <tr>
155
+ <th>話者</th>
156
+ <th>入力音声</th>
157
+ <th>合成音声</th>
158
+ </tr>
159
+ </thead>
160
+ <tbody>
161
+ <tr>
162
+ <td>ランダム話者</td>
163
+ <td> - </td>
164
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/en/2_output.wav" /></td>
165
+ </tr>
166
+ </tbody>
167
+ </table>
168
+
169
+ ## 日本語の文1
170
+
171
+ ```
172
+ 先進技術の領域において、人工知能の進化は画期的な成果として立っています。常に機械ができることの限界を
173
+ 押し広げているこのダイナミックな分野は、急速な成長と革新を見せています。複雑なデータパターンの解読か
174
+ ら自動運転車の操縦まで、AIの応用は広範囲に及びます。
175
+ ```
176
+
177
+
178
+ <table>
179
+ <thead>
180
+ <tr>
181
+ <th>話者</th>
182
+ <th>入力音声</th>
183
+ <th>合成音声</th>
184
+ </tr>
185
+ </thead>
186
+ <tbody>
187
+ <tr>
188
+ <td>ランダム話者1</td>
189
+ <td> - </td>
190
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/ja/0_output.wav" /></td>
191
+ </tr>
192
+ <tr>
193
+ <td>ランダム話者2</td>
194
+ <td> - </td>
195
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/ja/1_output.wav" /></td>
196
+ </tr>
197
+ </tbody>
198
+ </table>
199
+
200
+ ## 日本語の文2
201
+ ```
202
+ 皆さん、こんにちは。私はフィッシュオーディオによって開発されたオープンソースのテ
203
+ キストから音声への変換モデルです。15万時間のデータトレーニングを経て、
204
+ 中国語、日本語、英語を熟知しており、言語処理能力は人間に近いレベルです。
205
+ 声の表現も多彩で豊かです。数億のパラメータを持つこのモデルは、コミュニティ
206
+ のメンバーが個人のデバイスで簡単に実行し、微調整することができると
207
+ 信じています。これにより、私を個人の音声アシスタントとして活用できます。
208
+ ```
209
+
210
+ <table>
211
+ <thead>
212
+ <tr>
213
+ <th>話者</th>
214
+ <th>入力音声</th>
215
+ <th>合成音声</th>
216
+ </tr>
217
+ </thead>
218
+ <tbody>
219
+ <tr>
220
+ <td>ランダム話者</td>
221
+ <td> - </td>
222
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/ja/2_output.wav" /></td>
223
+ </tr>
224
+ </tbody>
225
+ </table>
docs/ja/start_agent.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # エージェントの開始
2
+
3
+ !!! note
4
+ もしあなたがネイティブ・スピーカーで、翻訳に問題があるとお感じでしたら、issueかpull requestをお送りください!
5
+
6
+ ## 要件
7
+
8
+ - GPUメモリ: 最低8GB(量子化使用時)、16GB以上推奨
9
+ - ディスク使用量: 10GB
10
+
11
+ ## モデルのダウンロード
12
+
13
+ 以下のコマンドでモデルを取得できます:
14
+
15
+ ```bash
16
+ huggingface-cli download fishaudio/fish-agent-v0.1-3b --local-dir checkpoints/fish-agent-v0.1-3b
17
+ ```
18
+
19
+ これらを'checkpoints'フォルダに配置してください。
20
+
21
+ また、[inference](inference.md)の手順に従ってfish-speechモデルもダウンロードする必要があります。
22
+
23
+ checkpointsには2つのフォルダが必要です。
24
+
25
+ `checkpoints/fish-speech-1.4`と`checkpoints/fish-agent-v0.1-3b`です。
26
+
27
+ ## 環境準備
28
+
29
+ すでにFish-speechをお持ちの場合は、以下の指示を追加するだけで直接使用できます:
30
+ ```bash
31
+ pip install cachetools
32
+ ```
33
+
34
+ !!! note
35
+ コンパイルにはPythonバージョン3.12未満を使用してください。
36
+
37
+ お持ちでない場合は、以下のコマンドで環境を構築してください:
38
+
39
+ ```bash
40
+ sudo apt-get install portaudio19-dev
41
+
42
+ pip install -e .[stable]
43
+ ```
44
+
45
+ ## エージェントデモの起動
46
+
47
+ fish-agentを構築するには、メインフォルダで以下のコマンドを使用してください:
48
+
49
+ ```bash
50
+ python -m tools.api_server --llama-checkpoint-path checkpoints/fish-agent-v0.1-3b/ --mode agent --compile
51
+ ```
52
+
53
+ `--compile`引数はPython < 3.12でのみサポートされており、トークン生成を大幅に高速化します。
54
+
55
+ 一度にコンパイルは行われません(覚えておいてください)。
56
+
57
+ 次に、別のターミナルを開いて以下のコマンドを使用します:
58
+
59
+ ```bash
60
+ python -m tools.e2e_webui
61
+ ```
62
+
63
+ これにより、デバイス上にGradio WebUIが作成されます。
64
+
65
+ モデルを初めて使用する際は、(`--compile`がTrueの場合)しばらくコンパイルが行われますので、お待ちください。
66
+
67
+ ## Gradio Webui
68
+ <p align="center">
69
+ <img src="../../assets/figs/agent_gradio.png" width="75%">
70
+ </p>
71
+
72
+ お楽しみください!
73
+
74
+ ## パフォーマンス
75
+
76
+ テストでは、4060搭載のラップトップではかろうじて動作しますが、非常に厳しい状態で、約8トークン/秒程度です。4090ではコンパイル時に約95トークン/秒で、これが推奨環境です。
77
+
78
+ # エージェントについて
79
+
80
+ このデモは初期アルファテストバージョンで、推論速度の最適化が必要で、修正を待つバグが多数あります。バグを発見した場合や修正したい場合は、issueやプルリクエストをいただけると大変嬉しく思います。
docs/ko/finetune.md ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 파인튜닝
2
+
3
+ 이 페이지를 열었다는 것은, 사전 학습된 퓨샷(Few-shot) 모델의 성능에 만족하지 못했다는 의미일 것입니다. 데이터셋의 성능을 향상시키기 위해 모델을 파인튜닝하고 싶으시겠죠.
4
+
5
+ 현재 버전에서는 'LLAMA' 부분만 파인튜닝하시면 됩니다.
6
+
7
+ ## LLAMA 파인튜닝
8
+ ### 1. 데이터셋 준비
9
+
10
+ ```
11
+ .
12
+ ├── SPK1
13
+ │ ├── 21.15-26.44.lab
14
+ │ ├── 21.15-26.44.mp3
15
+ │ ├── 27.51-29.98.lab
16
+ │ ├── 27.51-29.98.mp3
17
+ │ ├── 30.1-32.71.lab
18
+ │ └── 30.1-32.71.mp3
19
+ └── SPK2
20
+ ├── 38.79-40.85.lab
21
+ └── 38.79-40.85.mp3
22
+ ```
23
+
24
+ 위와 같은 형식으로 데이터셋을 변환하여 `data` 디렉토리 안에 배치하세요. 오디오 파일의 확장자는 `.mp3`, `.wav`, `.flac` 중 하나여야 하며, 주석 파일은 `.lab` 확장자를 사용해야 합니다.
25
+
26
+ !!! info "데이터셋 형식"
27
+ `.lab` 주석 파일은 오디오의 전사 내용만 포함하면 되며, 특별한 형식이 필요하지 않습니다. 예를 들어, `hi.mp3`에서 "Hello, goodbye"라는 대사를 말한다면, `hi.lab` 파일에는 "Hello, goodbye"라는 한 줄의 텍스트만 있어야 합니다.
28
+
29
+ !!! warning
30
+ 데이터셋에 대한 음량 정규화(loudness normalization)를 적용하는 것이 좋습니다. 이를 위해 [fish-audio-preprocess](https://github.com/fishaudio/audio-preprocess)를 사용할 수 있습니다.
31
+
32
+ ```bash
33
+ fap loudness-norm data-raw data --clean
34
+ ```
35
+
36
+ ### 2. 시맨틱 토큰 배치 추출
37
+
38
+ VQGAN 가중치를 다운로드했는지 확인하세요. 다운로드하지 않았다면 아래 명령어를 실행하세요:
39
+
40
+ ```bash
41
+ huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
42
+ ```
43
+
44
+ 이후 시맨틱 토큰을 추출하기 위해 아래 명령어를 실행하세요:
45
+
46
+ ```bash
47
+ python tools/vqgan/extract_vq.py data \
48
+ --num-workers 1 --batch-size 16 \
49
+ --config-name "firefly_gan_vq" \
50
+ --checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth"
51
+ ```
52
+
53
+ !!! note
54
+ 추출 속도를 높이기 위해 `--num-workers`와 `--batch-size` 값을 조정할 수 있지만, GPU 메모리 한도를 초과하지 않도록 주의하세요.
55
+ VITS 형식의 경우, `--filelist xxx.list`를 사용하여 파일 목록을 지정할 수 있습니다.
56
+
57
+ 이 명령을 실행하면 `data` 디렉토리 안에 `.npy` 파일이 생성됩니다. 다음과 같이 표시됩니다:
58
+
59
+ ```
60
+ .
61
+ ├── SPK1
62
+ │ ├── 21.15-26.44.lab
63
+ │ ├── 21.15-26.44.mp3
64
+ │ ├── 21.15-26.44.npy
65
+ │ ├── 27.51-29.98.lab
66
+ │ ├── 27.51-29.98.mp3
67
+ │ ├── 27.51-29.98.npy
68
+ │ ├── 30.1-32.71.lab
69
+ │ ├── 30.1-32.71.mp3
70
+ │ └── 30.1-32.71.npy
71
+ └── SPK2
72
+ ├── 38.79-40.85.lab
73
+ ├── 38.79-40.85.mp3
74
+ └── 38.79-40.85.npy
75
+ ```
76
+
77
+ ### 3. 데이터셋을 protobuf로 패킹
78
+
79
+ ```bash
80
+ python tools/llama/build_dataset.py \
81
+ --input "data" \
82
+ --output "data/protos" \
83
+ --text-extension .lab \
84
+ --num-workers 16
85
+ ```
86
+
87
+ 명령이 완료되면 `data` 디렉토리 안에 `quantized-dataset-ft.protos` 파일이 생성됩니다.
88
+
89
+ ### 4. 마지막으로, LoRA를 이용한 파인튜닝
90
+
91
+ 마찬가지로, `LLAMA` 가중치를 다운로드했는지 확인하세요. 다운로드하지 않았다면 아래 명령어를 실행하세요:
92
+
93
+ ```bash
94
+ huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
95
+ ```
96
+
97
+ 마지막으로, 아래 명령어를 실행하여 파인튜닝을 시작할 수 있습니다:
98
+
99
+ ```bash
100
+ python fish_speech/train.py --config-name text2semantic_finetune \
101
+ project=$project \
102
+ [email protected]_config=r_8_alpha_16
103
+ ```
104
+
105
+ !!! note
106
+ `batch_size`, `gradient_accumulation_steps` 등의 학습 매개변수를 GPU 메모리에 맞게 조정하려면 `fish_speech/configs/text2semantic_finetune.yaml` 파일을 수정할 수 있습니다.
107
+
108
+ !!! note
109
+ Windows 사용자의 경우, `nccl` 문제를 피하려면 `trainer.strategy.process_group_backend=gloo`를 사용할 수 있습니다.
110
+
111
+ 훈련이 완료되면 [추론](inference.md) 섹션을 참고하여 음성을 생성할 수 있습니다.
112
+
113
+ !!! info
114
+ 기본적으로 모델은 화자의 말하는 패턴만 학습하고 음색은 학습하지 않습니다. 음색의 안정성을 위해 프롬프트를 사용해야 합니다.
115
+ 음색을 학습하려면 훈련 단계를 늘릴 수 있지만, 이는 과적합의 위험을 초래할 수 있습니다.
116
+
117
+ 훈련이 끝나면 LoRA 가중치를 일반 가중치로 변환한 후에 추론을 수행해야 합니다.
118
+
119
+ ```bash
120
+ python tools/llama/merge_lora.py \
121
+ --lora-config r_8_alpha_16 \
122
+ --base-weight checkpoints/fish-speech-1.5 \
123
+ --lora-weight results/$project/checkpoints/step_000000010.ckpt \
124
+ --output checkpoints/fish-speech-1.5-yth-lora/
125
+ ```
126
+
127
+ !!! note
128
+ 다른 체크포인트도 시도해 볼 수 있습니다. 요구 사항에 맞는 가장 초기 체크포인트를 사용하는 것이 좋습니다. 이들은 종종 분포 밖(OOD) 데이터에서 더 좋은 성능을 발휘합니다.
docs/ko/index.md ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 소개
2
+
3
+ <div>
4
+ <a target="_blank" href="https://discord.gg/Es5qTB9BcN">
5
+ <img alt="Discord" src="https://img.shields.io/discord/1214047546020728892?color=%23738ADB&label=Discord&logo=discord&logoColor=white&style=flat-square"/>
6
+ </a>
7
+ <a target="_blank" href="http://qm.qq.com/cgi-bin/qm/qr?_wv=1027&k=jCKlUP7QgSm9kh95UlBoYv6s1I-Apl1M&authKey=xI5ttVAp3do68IpEYEalwXSYZFdfxZSkah%2BctF5FIMyN2NqAa003vFtLqJyAVRfF&noverify=0&group_code=593946093">
8
+ <img alt="QQ" src="https://img.shields.io/badge/QQ Group-%2312B7F5?logo=tencent-qq&logoColor=white&style=flat-square"/>
9
+ </a>
10
+ <a target="_blank" href="https://hub.docker.com/r/fishaudio/fish-speech">
11
+ <img alt="Docker" src="https://img.shields.io/docker/pulls/fishaudio/fish-speech?style=flat-square&logo=docker"/>
12
+ </a>
13
+ </div>
14
+
15
+ !!! warning
16
+ 이 코드베이스의 불법적인 사용에 대해서는 책임을 지지 않습니다. DMCA(Digital Millennium Copyright Act) 및 해당 지역의 관련 법률을 참조하십시오. <br/>
17
+ 이 코드베이스와 모든 모델은 CC-BY-NC-SA-4.0 라이선스에 따라 배포됩니다.
18
+
19
+ <p align="center">
20
+ <img src="../assets/figs/diagram.png" width="75%">
21
+ </p>
22
+
23
+ ## 요구 사항
24
+
25
+ - GPU 메모리: 4GB (추론용), 8GB (파인튜닝용)
26
+ - 시스템: Linux, Windows
27
+
28
+ ## Windows 설정
29
+
30
+ 고급 Windows 사용자는 WSL2 또는 Docker를 사용하여 코드베이스를 실행하는 것을 고려할 수 있습니다.
31
+
32
+ ```bash
33
+ # 파이썬 3.10 가상 환경 생성, virtualenv도 사용할 수 있습니다.
34
+ conda create -n fish-speech python=3.10
35
+ conda activate fish-speech
36
+
37
+ # pytorch 설치
38
+ pip3 install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu121
39
+
40
+ # fish-speech 설치
41
+ pip3 install -e .
42
+
43
+ # (가속 활성화) triton-windows 설치
44
+ pip install https://github.com/AnyaCoder/fish-speech/releases/download/v0.1.0/triton_windows-0.1.0-py3-none-any.whl
45
+ ```
46
+
47
+ 비전문 Windows 사용자는 Linux 환경 없이 프로젝트를 실행할 수 있는 다음 기본 방법을 고려할 수 있습니다 (모델 컴파일 기능 포함, 즉 `torch.compile`):
48
+
49
+ 1. 프로젝트 패키지 추출.
50
+ 2. `install_env.bat`을 클릭하여 환경 설치.
51
+ 3. 컴파일 가속을 활성화하려면 아래 단계를 따르세요:
52
+ 1. LLVM 컴파일러 다운로드:
53
+ - [LLVM-17.0.6 (공식 사이트)](https://huggingface.co/fishaudio/fish-speech-1/resolve/main/LLVM-17.0.6-win64.exe?download=true)
54
+ - [LLVM-17.0.6 (미러 사이트)](https://hf-mirror.com/fishaudio/fish-speech-1/resolve/main/LLVM-17.0.6-win64.exe?download=true)
55
+ - `LLVM-17.0.6-win64.exe`를 다운로드 후 더블클릭하여 설치하고, 설치 경로 선택 시 `Add Path to Current User` 옵션을 체크하여 환경 변수를 추가합니다.
56
+ - 설치가 완료되었는지 확인합니다.
57
+ 2. Microsoft Visual C++ 재배포 가능 패키지를 다운로드하여 .dll 누락 문제 해결:
58
+ - [MSVC++ 14.40.33810.0 다운로드](https://aka.ms/vs/17/release/vc_redist.x64.exe)
59
+ 3. Visual Studio Community Edition을 다운로드하여 LLVM의 헤더 파일 의존성을 해결:
60
+ - [Visual Studio 다운로드](https://visualstudio.microsoft.com/zh-hans/downloads/)
61
+ - Visual Studio Installer를 설치한 후 Visual Studio Community 2022를 다운로드.
62
+ - `Desktop development with C++` 옵션을 선택하여 설치.
63
+ 4. [CUDA Toolkit 12.x](https://developer.nvidia.com/cuda-12-1-0-download-archive?target_os=Windows&target_arch=x86_64) 다운로드 및 설치.
64
+ 4. `start.bat`을 더블 클릭하여 훈련 추론 WebUI 관리 인터페이스를 엽니다. 필요한 경우 아래 지침에 따라 `API_FLAGS`를 수정할 수 있습니다.
65
+
66
+ !!! info "Optional"
67
+
68
+ 추론을 위해 WebUI를 사용하고자 하시나요?
69
+
70
+ 프로젝트 루트 디렉토리의 `API_FLAGS.txt` 파일을 편집하고 첫 세 줄을 아래와 같이 수정하세요:
71
+ ```
72
+ --infer
73
+ # --api
74
+ # --listen ...
75
+ ...
76
+ ```
77
+
78
+ !!! info "Optional"
79
+
80
+ API 서버를 시작하고 싶으신가요?
81
+
82
+ 프로젝트 루트 디렉토리의 `API_FLAGS.txt` 파일을 편집하고 첫 세 줄을 아래와 같이 수정하세요:
83
+
84
+ ```
85
+ # --infer
86
+ --api
87
+ --listen ...
88
+ ...
89
+ ```
90
+
91
+ !!! info "Optional"
92
+
93
+ `run_cmd.bat`을 더블 클릭하여 이 프로젝트의 conda/python 명령줄 환경에 진입할 수 있습니다.
94
+
95
+ ## Linux 설정
96
+
97
+ [pyproject.toml](../../pyproject.toml)에서 자세한 내용을 확인하세요.
98
+ ```bash
99
+ # 파이썬 3.10 가상 환경 생성, virtualenv도 사용할 수 있습니다.
100
+ conda create -n fish-speech python=3.10
101
+ conda activate fish-speech
102
+
103
+ # (Ubuntu / Debian 사용자) sox + ffmpeg 설치
104
+ apt install libsox-dev ffmpeg
105
+
106
+ # (Ubuntu / Debian 사용자) pyaudio 설치
107
+ apt install build-essential \
108
+ cmake \
109
+ libasound-dev \
110
+ portaudio19-dev \
111
+ libportaudio2 \
112
+ libportaudiocpp0
113
+
114
+ # pytorch 설치
115
+ pip3 install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1
116
+
117
+ # fish-speech 설치
118
+ pip3 install -e .[stable]
119
+ ```
120
+
121
+ ## macos 설정
122
+
123
+ MPS에서 추론을 수행하려면 `--device mps` 플래그를 추가하세요.
124
+ 추론 속도 비교는 [이 PR](https://github.com/fishaudio/fish-speech/pull/461#issuecomment-2284277772)을 참조하십시오.
125
+
126
+ !!! warning
127
+ Apple Silicon 장치에서는 `compile` 옵션이 공식적으로 지원되지 않으므로 추론 속도가 향상된다는 보장은 없습니다.
128
+
129
+ ```bash
130
+ # 파이썬 3.10 가상 환경 생성, virtualenv도 사용할 수 있습니다.
131
+ conda create -n fish-speech python=3.10
132
+ conda activate fish-speech
133
+ # pytorch 설치
134
+ pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1
135
+ # fish-speech 설치
136
+ pip install -e .[stable]
137
+ ```
138
+
139
+ ## Docker 설정
140
+
141
+ 1. NVIDIA Container Toolkit 설치:
142
+
143
+ Docker에서 모델 훈련 및 추론에 GPU를 사용하려면 NVIDIA Container Toolkit을 설치해야 합니다:
144
+
145
+ Ubuntu 사용자:
146
+
147
+ ```bash
148
+ # 저장소 추가
149
+ curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
150
+ && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
151
+ sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
152
+ sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
153
+ # nvidia-container-toolkit 설치
154
+ sudo apt-get update
155
+ sudo apt-get install -y nvidia-container-toolkit
156
+ # Docker 서비스 재시작
157
+ sudo systemctl restart docker
158
+ ```
159
+
160
+ 다른 Linux 배포판 사용자는: [NVIDIA Container Toolkit 설치 가이드](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)를 참조하십시오.
161
+
162
+ 2. fish-speech 이미지 가져오기 및 실행
163
+
164
+ ```bash
165
+ # 이미지 가져오기
166
+ docker pull fishaudio/fish-speech:latest-dev
167
+ # 이미지 실행
168
+ docker run -it \
169
+ --name fish-speech \
170
+ --gpus all \
171
+ -p 7860:7860 \
172
+ fishaudio/fish-speech:latest-dev \
173
+ zsh
174
+ # 다른 포트를 사용하려면 -p 매개변수를 YourPort:7860으로 수정하세요
175
+ ```
176
+
177
+ 3. 모델 종속성 다운로드
178
+
179
+ Docker 컨테이너 내부의 터미널에서 아래 명령어를 사용하여 필요한 `vqgan` 및 `llama` 모델을 Huggingface 리포지토리에서 다운로드합니다.
180
+
181
+ ```bash
182
+ huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
183
+ ```
184
+
185
+ 4. 환경 변수 설정 및 WebUI 접근
186
+
187
+ Docker 컨테이너 내부의 터미널에서 `export GRADIO_SERVER_NAME="0.0.0.0"`를 입력하여 Docker 내부에서 Gradio 서비스에 외부 접근을 허용합니다.
188
+ 이후, 터미널에서 `python tools/run_webui.py` 명령어를 입력하여 WebUI 서비스를 시작합니다.
189
+
190
+ WSL 또는 macOS를 사용하는 경우 [http://localhost:7860](http://localhost:7860)에서 WebUI 인터페이스를 열 수 있습니다.
191
+
192
+ 서버에 배포된 경우, localhost를 서버의 IP로 교체하세요.
193
+
194
+ ## 변경 사항
195
+
196
+ - 2024/09/10: Fish-Speech 1.4 버전으로 업데이트, 데이터셋 크기 증가 및 양자화기의 n_groups를 4에서 8로 변경.
197
+ - 2024/07/02: Fish-Speech 1.2 버전으로 업데이트, VITS 디코더 제거 및 제로샷 능력 크게 향상.
198
+ - 2024/05/10: Fish-Speech 1.1 버전으로 업데이트, WER 감소 및 음색 유사성을 개선하기 위해 VITS 디코더 구현.
199
+ - 2024/04/22: Fish-Speech 1.0 버전 완료, VQGAN 및 LLAMA 모델 대폭 수정.
200
+ - 2023/12/28: `lora` 파인튜닝 지원 추가.
201
+ - 2023/12/27: `gradient checkpointing`, `causual sampling`, 및 `flash-attn` 지원 추가.
202
+ - 2023/12/19: WebUI 및 HTTP API 업데이트.
203
+ - 2023/12/18: 파인튜닝 문서 및 관련 예시 업데이트.
204
+ - 2023/12/17: `text2semantic` 모델 업데이트, 음소 없는 모드 지원.
205
+ - 2023/12/13: 베타 버전 출시, VQGAN 모델 및 LLAMA 기반 언어 모델(음소 지원만 포함).
206
+
207
+ ## 감사의 말
208
+
209
+ - [VITS2 (daniilrobnikov)](https://github.com/daniilrobnikov/vits2)
210
+ - [Bert-VITS2](https://github.com/fishaudio/Bert-VITS2)
211
+ - [GPT VITS](https://github.com/innnky/gpt-vits)
212
+ - [MQTTS](https://github.com/b04901014/MQTTS)
213
+ - [GPT Fast](https://github.com/pytorch-labs/gpt-fast)
214
+ - [Transformers](https://github.com/huggingface/transformers)
215
+ - [GPT-SoVITS](https://github.com/RVC-Boss/GPT-SoVITS)
docs/ko/inference.md ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 추론
2
+
3
+ 추론은 명령줄, HTTP API, 그리고 웹 UI에서 지원됩니다.
4
+
5
+ !!! note
6
+ 전체 추론 과정은 다음의 여러 단계로 구성됩니다:
7
+
8
+ 1. VQGAN을 사용하여 약 10초 분량의 음성을 인코딩합니다.
9
+ 2. 인코딩된 시맨틱 토큰과 해당 텍스트를 예시로 언어 모델에 입력합니다.
10
+ 3. 새로운 텍스트를 입력하면, 모델이 해당하는 시맨틱 토큰을 생성합니다.
11
+ 4. 생성된 시맨틱 토큰을 VITS / VQGAN에 입력하여 음성을 디코딩하고 생성합니다.
12
+
13
+ ## 명령줄 추론
14
+
15
+ 필요한 `vqgan` 및 `llama` 모델을 Hugging Face 리포지토리에서 다운로드하세요.
16
+
17
+ ```bash
18
+ huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
19
+ ```
20
+
21
+ ### 1. 음성에서 프롬프트 생성:
22
+
23
+ !!! note
24
+ 모델이 음색을 무작위로 선택하도록 하려면 이 단계를 건너뛸 수 있습니다.
25
+
26
+ ```bash
27
+ python tools/vqgan/inference.py \
28
+ -i "paimon.wav" \
29
+ --checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth"
30
+ ```
31
+
32
+ 이 명령을 실행하면 `fake.npy` 파일을 얻게 됩니다.
33
+
34
+ ### 2. 텍스트에서 시맨틱 토큰 생성:
35
+
36
+ ```bash
37
+ python tools/llama/generate.py \
38
+ --text "변환할 텍스트" \
39
+ --prompt-text "참고할 텍스트" \
40
+ --prompt-tokens "fake.npy" \
41
+ --checkpoint-path "checkpoints/fish-speech-1.5" \
42
+ --num-samples 2 \
43
+ --compile
44
+ ```
45
+
46
+ 이 명령을 실행하면 작업 디렉토리에 `codes_N` 파일이 생성되며, N은 0부터 시작하는 정수입니다.
47
+
48
+ !!! note
49
+ 빠른 추론을 위해 `--compile` 옵션을 사용하여 CUDA 커널을 결합할 수 있습니다 (~초당 30 토큰 -> ~초당 500 토큰).
50
+ `--compile` 매개변수를 주석 처리하여 가속화 옵션을 사용하지 않을 수도 있습니다.
51
+
52
+ !!! info
53
+ bf16을 지원하지 않는 GPU의 경우 `--half` 매개변수를 사용해야 할 수 있습니다.
54
+
55
+ ### 3. 시맨틱 토큰에서 음성 생성:
56
+
57
+ #### VQGAN 디코더
58
+
59
+ ```bash
60
+ python tools/vqgan/inference.py \
61
+ -i "codes_0.npy" \
62
+ --checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth"
63
+ ```
64
+
65
+ ## HTTP API 추론
66
+
67
+ 추론을 위한 HTTP API를 제공하고 있습니다. 아래의 명령어로 서버를 시작할 수 있습니다:
68
+
69
+ ```bash
70
+ python -m tools.api_server \
71
+ --listen 0.0.0.0:8080 \
72
+ --llama-checkpoint-path "checkpoints/fish-speech-1.5" \
73
+ --decoder-checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth" \
74
+ --decoder-config-name firefly_gan_vq
75
+ ```
76
+
77
+ 추론 속도를 높이고 싶다면 `--compile` 매개변수를 추가할 수 있습니다.
78
+
79
+ 이후, http://127.0.0.1:8080/ 에서 API를 확인하고 테스트할 수 있습니다.
80
+
81
+ 아래는 `tools/api_client.py`를 사용하여 요청을 보내는 예시입니다.
82
+
83
+ ```bash
84
+ python -m tools.api_client \
85
+ --text "입력할 텍스트" \
86
+ --reference_audio "참고 음성 경로" \
87
+ --reference_text "참고 음성의 텍스트 내용" \
88
+ --streaming True
89
+ ```
90
+
91
+ 위 명령은 참고 음성 정보를 바탕으로 원하는 음성을 합성하고, 스트리밍 방식으로 반환합니다.
92
+
93
+ 다음 예시는 여러 개의 참고 음성 경로와 텍스트를 한꺼번에 사용할 수 있음을 보여줍니다. 명령에서 공백으로 구분하여 입력합니다.
94
+
95
+ ```bash
96
+ python -m tools.api_client \
97
+ --text "입력할 텍스트" \
98
+ --reference_audio "참고 음성 경로1" "참고 음성 경로2" \
99
+ --reference_text "참고 음성 텍스트1" "참고 음성 텍스트2"\
100
+ --streaming False \
101
+ --output "generated" \
102
+ --format "mp3"
103
+ ```
104
+
105
+ 위 명령어는 여러 참고 음성 정보를 바탕으로 `MP3` 형식의 음성을 합성하여, 현재 디렉토리에 `generated.mp3`로 저장합니다.
106
+
107
+ `--reference_audio`와 `--reference_text` 대신에 `--reference_id`(하나만 사용 가능)를 사용할 수 있습니다. 프로젝트 루트 디렉토리에 `references/<your reference_id>` 폴더를 만들어 해당 음성과 주석 텍스트를 넣어야 합니다. 참고 음성은 최대 90초까지 지원됩니다.
108
+
109
+ !!! info
110
+ 제공되는 파라미터는 `python -m tools.api_client -h`를 사용하여 확인할 수 있습니다.
111
+
112
+ ## GUI 추론
113
+ [클라이언트 다운로드](https://github.com/AnyaCoder/fish-speech-gui/releases)
114
+
115
+ ## WebUI 추론
116
+
117
+ 다음 명령으로 WebUI를 시작할 수 있습니다:
118
+
119
+ ```bash
120
+ python -m tools.webui \
121
+ --llama-checkpoint-path "checkpoints/fish-speech-1.5" \
122
+ --decoder-checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth" \
123
+ --decoder-config-name firefly_gan_vq
124
+ ```
125
+
126
+ > 추론 속도를 높이고 싶다면 `--compile` 매개변수를 추가할 수 있습니다.
127
+
128
+ !!! note
129
+ 라벨 파일과 참고 음성 파일을 미리 메인 디렉토리의 `references` 폴더에 저장해 두면, WebUI에�� 바로 호출할 수 있습니다. (해당 폴더는 직접 생성해야 합니다.)
130
+
131
+ !!! note
132
+ WebUI를 구성하기 위해 `GRADIO_SHARE`, `GRADIO_SERVER_PORT`, `GRADIO_SERVER_NAME`과 같은 Gradio 환경 변수를 사용할 수 있습니다.
133
+
134
+ 즐기세요!
docs/ko/samples.md ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 샘플
2
+
3
+ ver 1.4
4
+
5
+ ## Credits
6
+ [Seed-TTS (2024)](https://bytedancespeech.github.io/seedtts_tech_report/)에 감사드리며, 평가 데이터를 제공해 주셔서 이 데모를 완성할 수 있었습니다.
7
+
8
+ 모든 프롬프트 음성은 Seed-TTS 효과 데모 페이지에서 가져왔으며, 모든 생성된 음성은 fish-speech 버전 1.4에서 첫 번째로 생성된 것입니다.
9
+
10
+ ## 제로샷 인컨텍스트 학습
11
+ - TODO: 한국어 제로샷 인컨텍스트 학습 샘플 추가. (현재는 영어와 중국어 데모만 제공됩니다.)
12
+
13
+ <table>
14
+ <thead>
15
+ <tr>
16
+ <th style="vertical-align : middle;text-align: center">언어</th>
17
+ <th style="vertical-align : middle;text-align: center">프롬프트</th>
18
+ <th style="vertical-align : middle;text-align: center">동일 언어 생성</th>
19
+ <th style="vertical-align : middle;text-align: center">교차 언어 생성</th>
20
+ </tr>
21
+ </thead>
22
+ <tbody>
23
+ <tr>
24
+ <td style="vertical-align : middle;text-align:center;" rowspan="3">EN</td>
25
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/prompts/4245145269330795065.wav" autoplay="">Your browser does not support the audio element.</audio></td>
26
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/4245145269330795065/same-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences.</td>
27
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/4245145269330795065/cross-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>顿时,气氛变得沉郁起来。乍看之下,一切的困扰仿佛都围绕在我身边。我皱着眉头,感受着那份压力,但我知道我不能放弃,不能认输。于是,我深吸一口气,心底的声音告诉我:“无论如何,都要冷静下来,重新开始。”</td>
28
+ </tr>
29
+ <tr>
30
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/prompts/2486365921931244890.wav" autoplay="">Your browser does not support the audio element.</audio></td>
31
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/2486365921931244890/same-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>Dealing with family secrets is never easy. Yet, sometimes, omission is a form of protection, intending to safeguard some from the harsh truths. One day, I hope you understand the reasons behind my actions. Until then, Anna, please, bear with me.</td>
32
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/2486365921931244890/cross-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>处理家庭秘密从来都不是一件容易的事。然而,有时候,隐瞒是一种保护形式,旨在保护一些人免受残酷的真相伤害。有一天,我希望你能理解我行为背后的原因。在那之前,安娜,请容忍我。</td>
33
+ </tr>
34
+ <tr>
35
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/prompts/-9102975986427238220.wav" autoplay="">Your browser does not support the audio element.</audio></td>
36
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/-9102975986427238220/same-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>The combinations of different textures and flavors create a perfect harmony. The succulence of the steak, the tartness of the cranberries, the crunch of pine nuts, and creaminess of blue cheese make it a truly delectable delight. Enjoy your culinary adventure!</td>
37
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/-9102975986427238220/cross-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>听着你的话,我心里五味杂陈。虽然我愿意一直在你身边,承担一切不幸,但我知道只有让你自己面对,才能真正让你变得更强大。所以,你要记得,无论面对何种困难,都请你坚强,我会在心里一直支持你的。</td>
38
+ </tr>
39
+ <tr>
40
+ <td style="vertical-align : middle;text-align:center;" rowspan="3">ZH</td>
41
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/prompts/2648200402409733590.wav" autoplay="">Your browser does not support the audio element.</audio></td>
42
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/2648200402409733590/same-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"</td>
43
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/2648200402409733590/cross-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>Suddenly, there was a burst of laughter beside me. I looked at them, stood up straight with high spirit, shook the slightly fleshy arms, and smiled lightly, saying, "The flesh on my body is to hide my bursting charm. Otherwise, wouldn't it scare you?"</td>
44
+ </tr>
45
+ <tr>
46
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/prompts/8913957783621352198.wav" autoplay="">Your browser does not support the audio element.</audio></td>
47
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/8913957783621352198/same-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>他闭上眼睛,期望这一切都能过去。然而,当他再次睁开眼睛,眼前的景象让他不禁倒吸一口气。雾气中出现的禁闭岛,陌生又熟悉,充满未知的危险。他握紧拳头,心知他的生活即将发生翻天覆地的改变。</td>
48
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/8913957783621352198/cross-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>He closed his eyes, expecting that all of this could pass. However, when he opened his eyes again, the sight in front of him made him couldn't help but take a deep breath. The closed island that appeared in the fog, strange and familiar, was full of unknown dangers. He tightened his fist, knowing that his life was about to undergo earth-shaking changes.</td>
49
+ </tr>
50
+ <tr>
51
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/prompts/2631296891109983590.wav" autoplay="">Your browser does not support the audio element.</audio></td>
52
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/2631296891109983590/same-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>顿时,气氛变得沉郁起来。乍看之下,一切的困扰仿佛都围绕在我身边。我皱着眉头,感受着那份压力,但我知道我不能放弃,不能认输。于是,我深吸一口气,心底的声音告诉我:“无论如何,都要冷静下来,重新开始。”</td>
53
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/zero-shot/2631296891109983590/cross-lang-fish.wav" autoplay="">Your browser does not support the audio element.</audio><br>Suddenly, the atmosphere became gloomy. At first glance, all the troubles seemed to surround me. I frowned, feeling that pressure, but I know I can't give up, can't admit defeat. So, I took a deep breath, and the voice in my heart told me, "Anyway, must calm down and start again."</td>
54
+ </tr>
55
+ </tbody>
56
+ </table>
57
+
58
+ ## 화자 파인튜닝
59
+
60
+ <table>
61
+ <thead>
62
+ <tr>
63
+ <th style="text-align: center"> </th>
64
+ <th style="text-align: center">텍스트</th>
65
+ <th style="text-align: center">생성된 음성</th>
66
+ </tr>
67
+ </thead>
68
+ <tbody>
69
+ <tr>
70
+ <td style="vertical-align : middle;text-align:center;" rowspan="3">화자1</td>
71
+ <td style="vertical-align : middle;text-align:center;">好呀,哈哈哈哈哈,喜欢笑的人运气都不会差哦,希望你每天笑口常开~</td>
72
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/fine-tune/prompts/4781135337205789117.wav" autoplay="">Your browser does not support the audio element.</audio></td>
73
+ </tr>
74
+ <tr>
75
+ <td style="vertical-align : middle;text-align:center;">哇!恭喜你中了大乐透,八百万可真不少呢!有什么特别的计划或想法吗?</td>
76
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/fine-tune/4781135337205789117/fish_1_to_2.wav" autoplay="">Your browser does not support the audio element.</audio></td>
77
+ </tr>
78
+ <tr>
79
+ <td style="vertical-align : middle;text-align:center;">哼,你这么问是想请本小姐吃饭吗?如果对象是你的话,那也不是不可以。</td>
80
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/fine-tune/4781135337205789117/fish_1_to_3.wav" autoplay="">Your browser does not support the audio element.</audio></td>
81
+ </tr>
82
+ <tr>
83
+ <td style="vertical-align : middle;text-align:center;" rowspan="3">화자2</td>
84
+ <td style="vertical-align : middle;text-align:center;">是呀,他还想换个地球仪哈哈哈,看来给你积累了一些快乐值了,你还想不想再听一个其他的笑话呀?</td>
85
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/fine-tune/prompts/-1325430967143158944.wav" autoplay="">Your browser does not support the audio element.</audio></td>
86
+ </tr>
87
+ <tr>
88
+ <td style="vertical-align : middle;text-align:center;">嘿嘿,你是不是也想拥有甜甜的恋爱呢?《微微一笑很倾城》是你的不二选择,男女主是校花校草类型,他们通过游戏结识,再到两人见面,全程没有一点误会,真的齁甜,想想都忍不住“姨妈笑”~</td>
89
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/fine-tune/-1325430967143158944/fish_1_to_2.wav" autoplay="">Your browser does not support the audio element.</audio></td>
90
+ </tr>
91
+ <tr>
92
+ <td style="vertical-align : middle;text-align:center;">小傻瓜,嗯……算是个很可爱很亲切的名字,有点“独特”哦,不过我有些好奇,你为什么会给我选这个昵称呢?</td>
93
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/fine-tune/-1325430967143158944/fish_1_to_3.wav" autoplay="">Your browser does not support the audio element.</audio></td>
94
+ </tr>
95
+ </tbody>
96
+ </table>
97
+ <br>
98
+
99
+ ## 콘텐츠 편집
100
+
101
+ <table>
102
+ <thead>
103
+ <tr><th style="text-align: center">언어</th>
104
+ <th style="text-align: center">원본 텍스트</th>
105
+ <th style="text-align: center">원본 음성</th>
106
+ <th style="text-align: center">목표 텍스트</th>
107
+ <th style="text-align: center">편집된 음성</th>
108
+ </tr></thead>
109
+ <tbody>
110
+ <tr>
111
+ <td style="vertical-align : middle;text-align:center;" rowspan="2">EN</td>
112
+ <td style="vertical-align : middle;text-align:center;">They can't order me to stop dreaming. If you dream a thing more than once, it's sure to come true. Have faith in your dreams, and someday your rainbow will come shining through.</td>
113
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/content-edit/prompts/2372076002032794455.wav" autoplay="">Your browser does not support the audio element.</audio></td>
114
+ <td style="vertical-align : middle;text-align:center;">They can't <b>require</b> me to stop <b>imagining.</b> If you envision a thing more than once, it's <b>bound</b> to come <b>about</b>. Have <b>trust</b> in your <b>visions</b>, and someday your <b>radiance</b> will come <b>beaming</b> through.</td>
115
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/content-edit/2372076002032794455/edit-fish.wav" autoplay="">Your browser does not support the audio element.</audio></td>
116
+ </tr>
117
+ <tr>
118
+ <td style="vertical-align : middle;text-align:center;">Are you familiar with it? Slice the steak and place the strips on top, then garnish with the dried cranberries, pine nuts, and blue cheese. I wonder how people rationalise the decision?</td>
119
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/content-edit/prompts/3347127306902202498.wav" autoplay="">Your browser does not support the audio element.</audio></td>
120
+ <td style="vertical-align : middle;text-align:center;">Are you <b>acquainted</b> with it? <b>Cut the pork</b> and place the strips on top, then garnish with the dried <b>cherries, almonds,</b> and <b>feta</b> cheese. I <b>query</b> how people <b>justify</b> the <b>choice?</b></td>
121
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/content-edit/3347127306902202498/edit-fish.wav" autoplay="">Your browser does not support the audio element.</audio></td>
122
+ </tr>
123
+ <tr>
124
+ <td style="vertical-align : middle;text-align:center;" rowspan="2">ZH</td>
125
+ <td style="vertical-align : middle;text-align:center;">自古以来,庸君最怕党政了,可圣君他就不怕,不但不怕,反能利用。要我说,你就让明珠索额图互相争宠,只要你心里明白,左右逢源,你就能立于不败之地。</td>
126
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/content-edit/prompts/1297014176484007082.wav" autoplay="">Your browser does not support the audio element.</audio></td>
127
+ <td style="vertical-align : middle;text-align:center;"><b>从古至今</b>,庸君最怕<b>朝纲了</b>,可<b>明</b>君他就不怕,不但不怕,反能<b>借助</b>。要我说,你就让<b>李四张三</b>互相争宠,只要你心里<b>清楚</b>,左右<b>周旋</b>,你就能<b>处</b>于不败之<b>境</b>。</td>
128
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/content-edit/1297014176484007082/edit-fish.wav" autoplay="">Your browser does not support the audio element.</audio></td>
129
+ </tr>
130
+ <tr>
131
+ <td style="vertical-align : middle;text-align:center;">对,这就是我,万人敬仰的太乙真人,虽然有点婴儿肥,但也掩不住我逼人的帅气。</td>
132
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/content-edit/prompts/-40165564411515767.wav" autoplay="">Your browser does not support the audio element.</audio></td>
133
+ <td style="vertical-align : middle;text-align:center;">对,这就是我,<b>众人尊崇</b>的太<b>白金星</b>,虽然有点<b>娃娃脸</b>,但也<b>遮</b>不住我<b>迷人</b>的<b>魅力。</b></td>
134
+ <td style="vertical-align : middle;text-align:center;"><audio controls="controls" style="width: 190px;"><source src="https://anyacoder.github.io/fishaudio.github.io/samples/content-edit/-40165564411515767/edit-fish.wav" autoplay="">Your browser does not support the audio element.</audio></td>
135
+ </tr>
136
+ </tbody>
137
+ </table>
docs/ko/start_agent.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 에이전트 시작하기
2
+
3
+ !!! note
4
+ 전체 문서는 claude3.5 Sonnet에 의해 번역되었으며, 원어민인 경우 번역에 문제가 있다고 생각되면 이슈나 풀 리퀘스트를 보내주셔서 대단히 감사합니다!
5
+
6
+ ## 요구사항
7
+
8
+ - GPU 메모리: 최소 8GB(양자화 사용 시), 16GB 이상 권장
9
+ - 디스크 사용량: 10GB
10
+
11
+ ## 모델 다운로드
12
+
13
+ 다음 명령어로 모델을 받을 수 있습니다:
14
+
15
+ ```bash
16
+ huggingface-cli download fishaudio/fish-agent-v0.1-3b --local-dir checkpoints/fish-agent-v0.1-3b
17
+ ```
18
+
19
+ 'checkpoints' 폴더에 파일들을 넣으세요.
20
+
21
+ 또한 [inference](inference.md)에 설명된 대로 fish-speech 모델도 다운로드해야 합니다.
22
+
23
+ checkpoints에는 2개의 폴더가 있어야 합니다.
24
+
25
+ `checkpoints/fish-speech-1.4`와 `checkpoints/fish-agent-v0.1-3b`입니다.
26
+
27
+ ## 환경 준비
28
+
29
+ 이미 Fish-speech가 있다면 다음 명령어를 추가하여 바로 사용할 수 있습니다:
30
+ ```bash
31
+ pip install cachetools
32
+ ```
33
+
34
+ !!! 참고
35
+ 컴파일을 위해 Python 3.12 미만 버전을 사용해 주세요.
36
+
37
+ 없다면 아래 명령어를 사용하여 환경을 구축하세요:
38
+
39
+ ```bash
40
+ sudo apt-get install portaudio19-dev
41
+
42
+ pip install -e .[stable]
43
+ ```
44
+
45
+ ## 에이전트 데모 실행
46
+
47
+ fish-agent를 구축하려면 메인 폴더에서 아래 명령어를 사용하세요:
48
+
49
+ ```bash
50
+ python -m tools.api_server --llama-checkpoint-path checkpoints/fish-agent-v0.1-3b/ --mode agent --compile
51
+ ```
52
+
53
+ `--compile` 인자는 Python < 3.12에서만 지원되며, 토큰 생성 속도를 크게 향상시킵니다.
54
+
55
+ 한 번에 컴파일되지 않습니다(기억해 두세요).
56
+
57
+ 그런 다음 다른 터미널을 열고 다음 명령어를 사용하세요:
58
+
59
+ ```bash
60
+ python -m tools.e2e_webui
61
+ ```
62
+
63
+ 이렇게 하면 기기에 Gradio WebUI가 생성됩니다.
64
+
65
+ 모델을 처음 사용할 때는 (`--compile`이 True인 경우) 잠시 컴파일이 진행되므로 기다려 주세요.
66
+
67
+ ## Gradio Webui
68
+ <p align="center">
69
+ <img src="../../assets/figs/agent_gradio.png" width="75%">
70
+ </p>
71
+
72
+ 즐거운 시간 되세요!
73
+
74
+ ## 성능
75
+
76
+ 테스트 결과, 4060 노트북은 겨우 실행되며 매우 부하가 큰 상태로, 초당 약 8토큰 정도만 처리합니다. 4090은 컴파일 상태에서 초당 약 95토큰을 처리하며, 이것이 저희가 권장하는 사양입니다.
77
+
78
+ # 에이전트 소개
79
+
80
+ 이 데모는 초기 알파 테스트 버전으로, 추론 속도 최적화가 필요하며 수정해야 할 버그가 많이 있습니다. 버그를 발견하거나 수정하고 싶으시다면 이슈나 풀 리퀘스트를 보내주시면 매우 감사하겠습니다.
docs/pt/finetune.md ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ajuste Fino
2
+
3
+ É óbvio que ao abrir esta página, você não deve estar muito satisfeito com o desempenho do modelo pré-treinado com poucos exemplos. Você pode querer ajustar o modelo para melhorar seu desempenho em seu conjunto de dados.
4
+
5
+ Na atual versão, a única coisa que você precisa ajustar é a parte do 'LLAMA'.
6
+
7
+ ## Ajuste Fino do LLAMA
8
+ ### 1. Preparando o conjunto de dados
9
+
10
+ ```
11
+ .
12
+ ├── SPK1
13
+ │ ├── 21.15-26.44.lab
14
+ │ ├── 21.15-26.44.mp3
15
+ │ ├── 27.51-29.98.lab
16
+ │ ├── 27.51-29.98.mp3
17
+ │ ├── 30.1-32.71.lab
18
+ │ └── 30.1-32.71.mp3
19
+ └── SPK2
20
+ ├── 38.79-40.85.lab
21
+ └── 38.79-40.85.mp3
22
+ ```
23
+
24
+ Você precisa converter seu conjunto de dados para o formato acima e colocá-lo em `data`. O arquivo de áudio pode ter as extensões `.mp3`, `.wav` ou `.flac`, e o arquivo de anotação deve ter a extensão `.lab`.
25
+
26
+ !!! info
27
+ O arquivo de anotação `.lab` deve conter apenas a transcrição do áudio, sem a necessidade de formatação especial. Por exemplo, se o arquivo `hi.mp3` disser "Olá, tchau", o arquivo `hi.lab` conterá uma única linha de texto: "Olá, tchau".
28
+
29
+ !!! warning
30
+ É recomendado aplicar normalização de volume ao conjunto de dados. Você pode usar o [fish-audio-preprocess](https://github.com/fishaudio/audio-preprocess) para fazer isso.
31
+
32
+ ```bash
33
+ fap loudness-norm data-raw data --clean
34
+ ```
35
+
36
+
37
+ ### 2. Extração em lote de tokens semânticos
38
+
39
+ Certifique-se de ter baixado os pesos do VQGAN. Se não, execute o seguinte comando:
40
+
41
+ ```bash
42
+ huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
43
+ ```
44
+
45
+ Em seguida, você pode executar o seguinte comando para extrair os tokens semânticos:
46
+
47
+ ```bash
48
+ python tools/vqgan/extract_vq.py data \
49
+ --num-workers 1 --batch-size 16 \
50
+ --config-name "firefly_gan_vq" \
51
+ --checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth"
52
+ ```
53
+
54
+ !!! note
55
+ Você pode ajustar `--num-workers` e `--batch-size` para aumentar a velocidade de extração, mas certifique-se de não exceder o limite de memória da sua GPU.  
56
+ Para o formato VITS, você pode especificar uma lista de arquivos usando `--filelist xxx.list`.
57
+
58
+ Este comando criará arquivos `.npy` no diretório `data`, como mostrado abaixo:
59
+
60
+ ```
61
+ .
62
+ ├── SPK1
63
+ │ ├── 21.15-26.44.lab
64
+ │ ├── 21.15-26.44.mp3
65
+ │ ├── 21.15-26.44.npy
66
+ │ ├── 27.51-29.98.lab
67
+ │ ├── 27.51-29.98.mp3
68
+ │ ├── 27.51-29.98.npy
69
+ │ ├── 30.1-32.71.lab
70
+ │ ├── 30.1-32.71.mp3
71
+ │ └── 30.1-32.71.npy
72
+ └── SPK2
73
+ ├── 38.79-40.85.lab
74
+ ├── 38.79-40.85.mp3
75
+ └── 38.79-40.85.npy
76
+ ```
77
+
78
+ ### 3. Empacotar o conjunto de dados em protobuf
79
+
80
+ ```bash
81
+ python tools/llama/build_dataset.py \
82
+ --input "data" \
83
+ --output "data/protos" \
84
+ --text-extension .lab \
85
+ --num-workers 16
86
+ ```
87
+
88
+ Após executar o comando, você deverá ver o arquivo `quantized-dataset-ft.protos` no diretório `data`.
89
+
90
+ ### 4. E finalmente, chegamos ao ajuste fino com LoRA
91
+
92
+ Da mesma forma, certifique-se de ter baixado os pesos do `LLAMA`. Se não, execute o seguinte comando:
93
+
94
+ ```bash
95
+ huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
96
+ ```
97
+
98
+ E então, execute o seguinte comando para iniciar o ajuste fino:
99
+
100
+ ```bash
101
+ python fish_speech/train.py --config-name text2semantic_finetune \
102
+ project=$project \
103
+ [email protected]_config=r_8_alpha_16
104
+ ```
105
+
106
+ !!! note
107
+ Se quiser, você pode modificar os parâmetros de treinamento, como `batch_size`, `gradient_accumulation_steps`, etc., para se ajustar à memória da sua GPU, modificando `fish_speech/configs/text2semantic_finetune.yaml`.
108
+
109
+ !!! note
110
+ Para usuários do Windows, é recomendado usar `trainer.strategy.process_group_backend=gloo` para evitar problemas com `nccl`.
111
+
112
+ Após concluir o treinamento, consulte a seção [inferência](inference.md).
113
+
114
+ !!! info
115
+ Por padrão, o modelo aprenderá apenas os padrões de fala do orador e não o timbre. Ainda pode ser preciso usar prompts para garantir a estabilidade do timbre.
116
+ Se quiser que ele aprenda o timbre, aumente o número de etapas de treinamento, mas isso pode levar ao overfitting (sobreajuste).
117
+
118
+ Após o treinamento, é preciso converter os pesos do LoRA em pesos regulares antes de realizar a inferência.
119
+
120
+ ```bash
121
+ python tools/llama/merge_lora.py \
122
+ --lora-config r_8_alpha_16 \
123
+ --base-weight checkpoints/fish-speech-1.5 \
124
+ --lora-weight results/$project/checkpoints/step_000000010.ckpt \
125
+ --output checkpoints/fish-speech-1.5-yth-lora/
126
+ ```
127
+ !!! note
128
+ É possível também tentar outros checkpoints. Sugerimos usar o checkpoint que melhor atenda aos seus requisitos, pois eles geralmente têm um desempenho melhor em dados fora da distribuição (OOD).
docs/pt/index.md ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Introdução
2
+
3
+ <div>
4
+ <a target="_blank" href="https://discord.gg/Es5qTB9BcN">
5
+ <img alt="Discord" src="https://img.shields.io/discord/1214047546020728892?color=%23738ADB&label=Discord&logo=discord&logoColor=white&style=flat-square"/>
6
+ </a>
7
+ <a target="_blank" href="http://qm.qq.com/cgi-bin/qm/qr?_wv=1027&k=jCKlUP7QgSm9kh95UlBoYv6s1I-Apl1M&authKey=xI5ttVAp3do68IpEYEalwXSYZFdfxZSkah%2BctF5FIMyN2NqAa003vFtLqJyAVRfF&noverify=0&group_code=593946093">
8
+ <img alt="QQ" src="https://img.shields.io/badge/QQ Group-%2312B7F5?logo=tencent-qq&logoColor=white&style=flat-square"/>
9
+ </a>
10
+ <a target="_blank" href="https://hub.docker.com/r/fishaudio/fish-speech">
11
+ <img alt="Docker" src="https://img.shields.io/docker/pulls/fishaudio/fish-speech?style=flat-square&logo=docker"/>
12
+ </a>
13
+ </div>
14
+
15
+ !!! warning
16
+ Não nos responsabilizamos por qualquer uso ilegal do código-fonte. Consulte as leis locais sobre DMCA (Digital Millennium Copyright Act) e outras leis relevantes em sua região. <br/>
17
+ Este repositório de código e os modelos são distribuídos sob a licença CC-BY-NC-SA-4.0.
18
+
19
+ <p align="center">
20
+ <img src="../assets/figs/diagram.png" width="75%">
21
+ </p>
22
+
23
+ ## Requisitos
24
+
25
+ - Memória da GPU: 4GB (para inferência), 8GB (para ajuste fino)
26
+ - Sistema: Linux, Windows
27
+
28
+ ## Configuração do Windows
29
+
30
+ Usuários profissionais do Windows podem considerar o uso do WSL2 ou Docker para executar a base de código.
31
+
32
+ ```bash
33
+ # Crie um ambiente virtual Python 3.10, também é possível usar o virtualenv
34
+ conda create -n fish-speech python=3.10
35
+ conda activate fish-speech
36
+
37
+ # Instale o pytorch
38
+ pip3 install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu121
39
+
40
+ # Instale o fish-speech
41
+ pip3 install -e .
42
+
43
+ # (Ativar aceleração) Instalar triton-windows
44
+ pip install https://github.com/AnyaCoder/fish-speech/releases/download/v0.1.0/triton_windows-0.1.0-py3-none-any.whl
45
+ ```
46
+
47
+ Usuários não profissionais do Windows podem considerar os seguintes métodos básicos para executar o projeto sem um ambiente Linux (com capacidades de compilação de modelo, ou seja, `torch.compile`):
48
+
49
+ 1. Extraia o pacote do projeto.
50
+ 2. Clique em `install_env.bat` para instalar o ambiente.
51
+ 3. Se você quiser ativar a aceleração de compilação, siga estas etapas:
52
+ 1. Baixe o compilador LLVM nos seguintes links:
53
+ - [LLVM-17.0.6 (Download do site oficial)](https://huggingface.co/fishaudio/fish-speech-1/resolve/main/LLVM-17.0.6-win64.exe?download=true)
54
+ - [LLVM-17.0.6 (Download do site espelho)](https://hf-mirror.com/fishaudio/fish-speech-1/resolve/main/LLVM-17.0.6-win64.exe?download=true)
55
+ - Após baixar o `LLVM-17.0.6-win64.exe`, clique duas vezes para instalar, selecione um local de instalação apropriado e, o mais importante, marque a opção `Add Path to Current User` para adicionar a variável de ambiente.
56
+ - Confirme que a instalação foi concluída.
57
+ 2. Baixe e instale o Microsoft Visual C++ Redistributable para resolver possíveis problemas de arquivos .dll ausentes:
58
+ - [Download do MSVC++ 14.40.33810.0](https://aka.ms/vs/17/release/vc_redist.x64.exe)
59
+ 3. Baixe e instale o Visual Studio Community Edition para obter as ferramentas de compilação do MSVC++ e resolver as dependências dos arquivos de cabeçalho do LLVM:
60
+ - [Download do Visual Studio](https://visualstudio.microsoft.com/pt-br/downloads/)
61
+ - Após instalar o Visual Studio Installer, baixe o Visual Studio Community 2022.
62
+ - Conforme mostrado abaixo, clique no botão `Modificar`, encontre a opção `Desenvolvimento de área de trabalho com C++` e selecione para fazer o download.
63
+ 4. Baixe e instale o [CUDA Toolkit 12.x](https://developer.nvidia.com/cuda-12-1-0-download-archive?target_os=Windows&target_arch=x86_64)
64
+ 4. Clique duas vezes em `start.bat` para abrir a interface de gerenciamento WebUI de inferência de treinamento. Se necessário, você pode modificar as `API_FLAGS` conforme mostrado abaixo.
65
+
66
+ !!! info "Opcional"
67
+ Você quer iniciar o WebUI de inferência?
68
+ Edite o arquivo `API_FLAGS.txt` no diretório raiz do projeto e modifique as três primeiras linhas como segue:
69
+ ```
70
+ --infer
71
+ # --api
72
+ # --listen ...
73
+ ...
74
+ ```
75
+
76
+ !!! info "Opcional"
77
+ Você quer iniciar o servidor de API?
78
+ Edite o arquivo `API_FLAGS.txt` no diretório raiz do projeto e modifique as três primeiras linhas como segue:
79
+
80
+ ```
81
+ # --infer
82
+ --api
83
+ --listen ...
84
+ ...
85
+ ```
86
+
87
+ !!! info "Opcional"
88
+ Clique duas vezes em `run_cmd.bat` para entrar no ambiente de linha de comando conda/python deste projeto.
89
+
90
+
91
+ ## Configuração para Linux
92
+
93
+ Para mais detalhes, consulte [pyproject.toml](../../pyproject.toml).
94
+ ```bash
95
+ # Crie um ambiente virtual python 3.10, você também pode usar virtualenv
96
+ conda create -n fish-speech python=3.10
97
+ conda activate fish-speech
98
+
99
+ # Instale o pytorch
100
+ pip3 install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1
101
+
102
+ # Para os Usuário do Ubuntu / Debian: Instale o sox + ffmpeg
103
+ apt install libsox-dev ffmpeg
104
+
105
+ # Para os Usuário do Ubuntu / Debian: Instale o pyaudio
106
+ apt install build-essential \
107
+ cmake \
108
+ libasound-dev \
109
+ portaudio19-dev \
110
+ libportaudio2 \
111
+ libportaudiocpp0
112
+
113
+ # Instale o fish-speech
114
+ pip3 install -e .[stable]
115
+ ```
116
+
117
+ ## Configuração para macos
118
+
119
+ Se você quiser realizar inferências no MPS, adicione a flag `--device mps`.
120
+ Para uma comparação das velocidades de inferência, consulte [este PR](https://github.com/fishaudio/fish-speech/pull/461#issuecomment-2284277772).
121
+
122
+ !!! aviso
123
+ A opção `compile` não é oficialmente suportada em dispositivos Apple Silicon, então não há garantia de que a velocidade de inferência irá melhorar.
124
+
125
+ ```bash
126
+ # create a python 3.10 virtual environment, you can also use virtualenv
127
+ conda create -n fish-speech python=3.10
128
+ conda activate fish-speech
129
+ # install pytorch
130
+ pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1
131
+ # install fish-speech
132
+ pip install -e .[stable]
133
+ ```
134
+
135
+ ## Configuração do Docker
136
+
137
+ 1. Instale o NVIDIA Container Toolkit:
138
+
139
+ Para usar a GPU com Docker para treinamento e inferência de modelos, você precisa instalar o NVIDIA Container Toolkit:
140
+
141
+ Para usuários Ubuntu:
142
+
143
+ ```bash
144
+ # Adicione o repositório remoto
145
+ curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
146
+ && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
147
+ sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
148
+ sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
149
+ # Instale o nvidia-container-toolkit
150
+ sudo apt-get update
151
+ sudo apt-get install -y nvidia-container-toolkit
152
+ # Reinicie o serviço Docker
153
+ sudo systemctl restart docker
154
+ ```
155
+
156
+ Para usuários de outras distribuições Linux, consulte o guia de instalação: [NVIDIA Container Toolkit Install-guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html).
157
+
158
+ 2. Baixe e execute a imagem fish-speech
159
+
160
+ ```shell
161
+ # Baixe a imagem
162
+ docker pull fishaudio/fish-speech:latest-dev
163
+ # Execute a imagem
164
+ docker run -it \
165
+ --name fish-speech \
166
+ --gpus all \
167
+ -p 7860:7860 \
168
+ fishaudio/fish-speech:latest-dev \
169
+ zsh
170
+ # Se precisar usar outra porta, modifique o parâmetro -p para YourPort:7860
171
+ ```
172
+
173
+ 3. Baixe as dependências do modelo
174
+
175
+ Certifique-se de estar no terminal do contêiner Docker e, em seguida, baixe os modelos necessários `vqgan` e `llama` do nosso repositório HuggingFace.
176
+
177
+ ```bash
178
+ huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
179
+ ```
180
+
181
+ 4. Configure as variáveis de ambiente e acesse a WebUI
182
+
183
+ No terminal do contêiner Docker, digite `export GRADIO_SERVER_NAME="0.0.0.0"` para permitir o acesso externo ao serviço gradio dentro do Docker.
184
+ Em seguida, no terminal do contêiner Docker, digite `python tools/run_webui.py` para iniciar o serviço WebUI.
185
+
186
+ Se estiver usando WSL ou MacOS, acesse [http://localhost:7860](http://localhost:7860) para abrir a interface WebUI.
187
+
188
+ Se estiver implantando em um servidor, substitua localhost pelo IP do seu servidor.
189
+
190
+ ## Histórico de Alterações
191
+ - 10/09/2024: Fish-Speech atualizado para a versão 1.4, aumentado o tamanho do conjunto de dados, quantizer n_groups 4 -> 8.
192
+ - 02/07/2024: Fish-Speech atualizado para a versão 1.2, removido o Decodificador VITS e aprimorado consideravelmente a capacidade de zero-shot.
193
+ - 10/05/2024: Fish-Speech atualizado para a versão 1.1, implementado o decodificador VITS para reduzir a WER e melhorar a similaridade de timbre.
194
+ - 22/04/2024: Finalizada a versão 1.0 do Fish-Speech, modificados significativamente os modelos VQGAN e LLAMA.
195
+ - 28/12/2023: Adicionado suporte para ajuste fino `lora`.
196
+ - 27/12/2023: Adicionado suporte para `gradient checkpointing`, `causual sampling` e `flash-attn`.
197
+ - 19/12/2023: Atualizada a interface web e a API HTTP.
198
+ - 18/12/2023: Atualizada a documentação de ajuste fino e exemplos relacionados.
199
+ - 17/12/2023: Atualizado o modelo `text2semantic`, suportando o modo sem fonemas.
200
+ - 13/12/2023: Versão beta lançada, incluindo o modelo VQGAN e um modelo de linguagem baseado em LLAMA (suporte apenas a fonemas).
201
+
202
+ ## Agradecimentos
203
+
204
+ - [VITS2 (daniilrobnikov)](https://github.com/daniilrobnikov/vits2)
205
+ - [Bert-VITS2](https://github.com/fishaudio/Bert-VITS2)
206
+ - [GPT VITS](https://github.com/innnky/gpt-vits)
207
+ - [MQTTS](https://github.com/b04901014/MQTTS)
208
+ - [GPT Fast](https://github.com/pytorch-labs/gpt-fast)
209
+ - [Transformers](https://github.com/huggingface/transformers)
210
+ - [GPT-SoVITS](https://github.com/RVC-Boss/GPT-SoVITS)
docs/pt/inference.md ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Inferência
2
+
3
+ Suporte para inferência por linha de comando, API HTTP e interface web (WebUI).
4
+
5
+ !!! note
6
+ O processo de raciocínio, em geral, consiste em várias partes:
7
+
8
+ 1. Codificar cerca de 10 segundos de voz usando VQGAN.
9
+ 2. Inserir os tokens semânticos codificados e o texto correspondente no modelo de linguagem como um exemplo.
10
+ 3. Dado um novo trecho de texto, fazer com que o modelo gere os tokens semânticos correspondentes.
11
+ 4. Inserir os tokens semânticos gerados no VITS / VQGAN para decodificar e gerar a voz correspondente.
12
+
13
+ ## Inferência por Linha de Comando
14
+
15
+ Baixe os modelos `vqgan` e `llama` necessários do nosso repositório Hugging Face.
16
+
17
+ ```bash
18
+ huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
19
+ ```
20
+
21
+ ### 1. Gerar prompt a partir da voz:
22
+
23
+ !!! note
24
+ Se quiser permitir que o modelo escolha aleatoriamente um timbre de voz, pule esta etapa.
25
+
26
+ ```bash
27
+ python tools/vqgan/inference.py \
28
+ -i "paimon.wav" \
29
+ --checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth"
30
+ ```
31
+
32
+ Você deverá obter um arquivo `fake.npy`.
33
+
34
+ ### 2. Gerar tokens semânticos a partir do texto:
35
+
36
+ ```bash
37
+ python tools/llama/generate.py \
38
+ --text "O texto que você deseja converter" \
39
+ --prompt-text "Seu texto de referência" \
40
+ --prompt-tokens "fake.npy" \
41
+ --checkpoint-path "checkpoints/fish-speech-1.5" \
42
+ --num-samples 2 \
43
+ --compile
44
+ ```
45
+
46
+ Este comando criará um arquivo `codes_N` no diretório de trabalho, onde N é um número inteiro começando de 0.
47
+
48
+ !!! note
49
+ Use `--compile` para fundir kernels CUDA para ter uma inferência mais rápida (~30 tokens/segundo -> ~500 tokens/segundo).
50
+ Mas, se não planeja usar a aceleração CUDA, comente o parâmetro `--compile`.
51
+
52
+ !!! info
53
+ Para GPUs que não suportam bf16, pode ser necessário usar o parâmetro `--half`.
54
+
55
+ ### 3. Gerar vocais a partir de tokens semânticos:
56
+
57
+ #### Decodificador VQGAN
58
+
59
+ ```bash
60
+ python tools/vqgan/inference.py \
61
+ -i "codes_0.npy" \
62
+ --checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth"
63
+ ```
64
+
65
+ ## Inferência por API HTTP
66
+
67
+ Fornecemos uma API HTTP para inferência. O seguinte comando pode ser usado para iniciar o servidor:
68
+
69
+ ```bash
70
+ python -m tools.api_server \
71
+ --listen 0.0.0.0:8080 \
72
+ --llama-checkpoint-path "checkpoints/fish-speech-1.5" \
73
+ --decoder-checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth" \
74
+ --decoder-config-name firefly_gan_vq
75
+ ```
76
+
77
+ > Para acelerar a inferência, adicione o parâmetro `--compile`.
78
+
79
+ Depois disso, é possível visualizar e testar a API em http://127.0.0.1:8080/.
80
+
81
+ Abaixo está um exemplo de envio de uma solicitação usando `tools/api_client.py`.
82
+
83
+ ```bash
84
+ python -m tools.api_client \
85
+ --text "Texto a ser inserido" \
86
+ --reference_audio "Caminho para o áudio de referência" \
87
+ --reference_text "Conteúdo de texto do áudio de referência" \
88
+ --streaming True
89
+ ```
90
+
91
+ O comando acima indica a síntese do áudio desejada de acordo com as informações do áudio de referência e a retorna em modo de streaming.
92
+
93
+ !!! info
94
+ Para aprender mais sobre parâmetros disponíveis, você pode usar o comando `python -m tools.api_client -h`
95
+
96
+ ## Inferência por WebUI
97
+
98
+ Para iniciar a WebUI de Inferência execute o seguinte comando:
99
+
100
+ ```bash
101
+ python -m tools.webui \
102
+ --llama-checkpoint-path "checkpoints/fish-speech-1.5" \
103
+ --decoder-checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth" \
104
+ --decoder-config-name firefly_gan_vq
105
+ ```
106
+ > Para acelerar a inferência, adicione o parâmetro `--compile`.
107
+
108
+ !!! note
109
+ Você pode salvar antecipadamente o arquivo de rótulos e o arquivo de áudio de referência na pasta `references` do diretório principal (que você precisa criar), para que possa chamá-los diretamente na WebUI.
110
+
111
+ !!! note
112
+ É possível usar variáveis de ambiente do Gradio, como `GRADIO_SHARE`, `GRADIO_SERVER_PORT`, `GRADIO_SERVER_NAME`, para configurar a WebUI.
113
+
114
+ Divirta-se!
docs/pt/samples.md ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Amostras
2
+
3
+ A demonstração da versão 1.4 foi atualizada [aqui](https://speech.fish.audio/samples/)
4
+
5
+ As amostras da v1.2 estão disponíveis em [Bilibili](https://www.bilibili.com/video/BV1wz421B71D/).
6
+
7
+ As seguintes amostras são do modelo v1.1.
8
+
9
+ ## Frase em Chinês 1
10
+ ```
11
+ 人间灯火倒映湖中,她的渴望让静水泛起涟漪。若代价只是孤独,那就让这份愿望肆意流淌。
12
+ 流入她所注视的世间,也流入她如湖水般澄澈的目光。
13
+ ```
14
+
15
+ <table>
16
+ <thead>
17
+ <tr>
18
+ <th>Orador</th>
19
+ <th>Áudio de Entrada</th>
20
+ <th>Áudio Sintetizado</th>
21
+ </tr>
22
+ </thead>
23
+ <tbody>
24
+ <tr>
25
+ <td>Nahida (Genshin Impact)</td>
26
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/0_input.wav" /></td>
27
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/0_output.wav" /></td>
28
+ </tr>
29
+ <tr>
30
+ <td>Zhongli (Genshin Impact)</td>
31
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/1_input.wav" /></td>
32
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/1_output.wav" /></td>
33
+ </tr>
34
+ <tr>
35
+ <td>Furina (Genshin Impact)</td>
36
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/2_input.wav" /></td>
37
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/2_output.wav" /></td>
38
+ </tr>
39
+ <tr>
40
+ <td>Orador Aleatório 1</td>
41
+ <td> - </td>
42
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/4_output.wav" /></td>
43
+ </tr>
44
+ <tr>
45
+ <td>Orador Aleatório 2</td>
46
+ <td> - </td>
47
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/5_output.wav" /></td>
48
+ </tr>
49
+ </tbody>
50
+ </table>
51
+
52
+
53
+ ## Frase em Chinês 2
54
+ ```
55
+ 你们这个是什么群啊,你们这是害人不浅啊你们这个群!谁是群主,出来!真的太过分了。你们搞这个群干什么?
56
+ 我儿子每一科的成绩都不过那个平均分呐,他现在初二,你叫我儿子怎么办啊?他现在还不到高中啊?
57
+ 你们害死我儿子了!快点出来你这个群主!再这样我去报警了啊!我跟你们说你们这一帮人啊,一天到晚啊,
58
+ 搞这些什么游戏啊,动漫啊,会害死你们的,你们没有前途我跟你说。你们这九百多个人,好好学习不好吗?
59
+ 一天到晚在上网。有什么意思啊?麻烦你重视一下你们的生活的目标啊?有一点学习目标行不行?一天到晚上网是不是人啊?
60
+ ```
61
+
62
+ <table>
63
+ <thead>
64
+ <tr>
65
+ <th>Orador</th>
66
+ <th>Áudio de Entrada</th>
67
+ <th>Áudio Sintetizado</th>
68
+ </tr>
69
+ </thead>
70
+ <tbody>
71
+ <tr>
72
+ <td>Nahida (Genshin Impact)</td>
73
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/0_input.wav" /></td>
74
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/6_output.wav" /></td>
75
+ </tr>
76
+ <tr>
77
+ <td>Orador Aleatório</td>
78
+ <td> - </td>
79
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/7_output.wav" /></td>
80
+ </tr>
81
+ </tbody>
82
+ </table>
83
+
84
+
85
+ ## Frase em Chinês 3
86
+ ```
87
+ 大家好,我是 Fish Audio 开发的开源文本转语音模型。经过十五万小时的数据训练,
88
+ 我已经能够熟练掌握中文、日语和英语,我的语言处理能力接近人类水平,声音表现形式丰富多变。
89
+ 作为一个仅有亿级参数的模型,我相信社区成员能够在个人设备上轻松运行和微调,让我成为您的私人语音助手。
90
+ ```
91
+
92
+
93
+ <table>
94
+ <thead>
95
+ <tr>
96
+ <th>Orador</th>
97
+ <th>Áudio de Entrada</th>
98
+ <th>Áudio Sintetizado</th>
99
+ </tr>
100
+ </thead>
101
+ <tbody>
102
+ <tr>
103
+ <td>Orador Aleatório</td>
104
+ <td> - </td>
105
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/8_output.wav" /></td>
106
+ </tr>
107
+ </tbody>
108
+ </table>
109
+
110
+ ## Frase em Inglês 1
111
+
112
+ ```
113
+ In the realm of advanced technology, the evolution of artificial intelligence stands as a
114
+ monumental achievement. This dynamic field, constantly pushing the boundaries of what
115
+ machines can do, has seen rapid growth and innovation. From deciphering complex data
116
+ patterns to driving cars autonomously, AI's applications are vast and diverse.
117
+ ```
118
+
119
+ <table>
120
+ <thead>
121
+ <tr>
122
+ <th>Orador</th>
123
+ <th>Áudio de Entrada</th>
124
+ <th>Áudio Sintetizado</th>
125
+ </tr>
126
+ </thead>
127
+ <tbody>
128
+ <tr>
129
+ <td>Orador Aleatório 1</td>
130
+ <td> - </td>
131
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/en/0_output.wav" /></td>
132
+ </tr>
133
+ <tr>
134
+ <td>Orador Aleatório 2</td>
135
+ <td> - </td>
136
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/en/1_output.wav" /></td>
137
+ </tr>
138
+ </tbody>
139
+ </table>
140
+
141
+ ## Frase em Inglês 2
142
+ ```
143
+ Hello everyone, I am an open-source text-to-speech model developed by
144
+ Fish Audio. After training with 150,000 hours of data, I have become proficient
145
+ in Chinese, Japanese, and English, and my language processing abilities
146
+ are close to human level. My voice is capable of a wide range of expressions.
147
+ As a model with only hundreds of millions of parameters, I believe community
148
+ members can easily run and fine-tune me on their personal devices, allowing
149
+ me to serve as your personal voice assistant.
150
+ ```
151
+
152
+ <table>
153
+ <thead>
154
+ <tr>
155
+ <th>Orador</th>
156
+ <th>Áudio de Entrada</th>
157
+ <th>Áudio Sintetizado</th>
158
+ </tr>
159
+ </thead>
160
+ <tbody>
161
+ <tr>
162
+ <td>Orador Aleatório</td>
163
+ <td> - </td>
164
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/en/2_output.wav" /></td>
165
+ </tr>
166
+ </tbody>
167
+ </table>
168
+
169
+ ## Frase em Japonês 1
170
+
171
+ ```
172
+ 先進技術の領域において、人工知能の進化は画期的な成果として立っています。常に機械ができることの限界を
173
+ 押し広げているこのダイナミックな分野は、急速な成長と革新を見せています。複雑なデータパターンの解読か
174
+ ら自動運転車の操縦まで、AIの応用は広範囲に及びます。
175
+ ```
176
+
177
+
178
+ <table>
179
+ <thead>
180
+ <tr>
181
+ <th>Orador</th>
182
+ <th>Áudio de Entrada</th>
183
+ <th>Áudio Sintetizado</th>
184
+ </tr>
185
+ </thead>
186
+ <tbody>
187
+ <tr>
188
+ <td>Orador Aleatório 1</td>
189
+ <td> - </td>
190
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/ja/0_output.wav" /></td>
191
+ </tr>
192
+ <tr>
193
+ <td>Orador Aleatório 2</td>
194
+ <td> - </td>
195
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/ja/1_output.wav" /></td>
196
+ </tr>
197
+ </tbody>
198
+ </table>
199
+
200
+ ## Frase em Japonês 2
201
+ ```
202
+ 皆さん、こんにちは。私はフィッシュオーディオによって開発されたオープンソースのテ
203
+ キストから音声への変換モデルです。15万時間のデータトレーニングを経て、
204
+ 中国語、日本語、英語を熟知しており、言語処理能力は人間に近いレベルです。
205
+ 声の表現も多彩で豊かです。数億のパラメータを持つこのモデルは、コミュニティ
206
+ のメンバーが個人のデバイスで簡単に実行し、微調整することができると
207
+ 信じています。これにより、私を個人の音声アシスタントとして活用できます。
208
+ ```
209
+
210
+ <table>
211
+ <thead>
212
+ <tr>
213
+ <th>Orador</th>
214
+ <th>Áudio de Entrada</th>
215
+ <th>Áudio Sintetizado</th>
216
+ </tr>
217
+ </thead>
218
+ <tbody>
219
+ <tr>
220
+ <td>Orador Aleatório</td>
221
+ <td> - </td>
222
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/ja/2_output.wav" /></td>
223
+ </tr>
224
+ </tbody>
225
+ </table>
docs/pt/start_agent.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Iniciar Agente
2
+
3
+ !!! note
4
+ Todo o documento foi traduzido por claude3.5 Sonnet, se você for um falante nativo e achar a tradução problemática, muito obrigado por nos enviar um problema ou uma solicitação pull!
5
+
6
+ ## Requisitos
7
+
8
+ - Memória GPU: No mínimo 8GB (com quantização), 16GB ou mais é recomendado.
9
+ - Uso de disco: 10GB
10
+
11
+ ## Download do Modelo
12
+
13
+ Você pode obter o modelo através de:
14
+
15
+ ```bash
16
+ huggingface-cli download fishaudio/fish-agent-v0.1-3b --local-dir checkpoints/fish-agent-v0.1-3b
17
+ ```
18
+
19
+ Coloque-os na pasta 'checkpoints'.
20
+
21
+ Você também precisará do modelo fish-speech que pode ser baixado seguindo as instruções em [inference](inference.md).
22
+
23
+ Então haverá 2 pastas em checkpoints.
24
+
25
+ O `checkpoints/fish-speech-1.4` e `checkpoints/fish-agent-v0.1-3b`
26
+
27
+ ## Preparação do Ambiente
28
+
29
+ Se você já tem o Fish-speech, pode usar diretamente adicionando a seguinte instrução:
30
+ ```bash
31
+ pip install cachetools
32
+ ```
33
+
34
+ !!! nota
35
+ Por favor, use a versão Python abaixo de 3.12 para compilação.
36
+
37
+ Se você não tem, use os comandos abaixo para construir seu ambiente:
38
+
39
+ ```bash
40
+ sudo apt-get install portaudio19-dev
41
+
42
+ pip install -e .[stable]
43
+ ```
44
+
45
+ ## Iniciar a Demo do Agente
46
+
47
+ Para construir o fish-agent, use o comando abaixo na pasta principal:
48
+
49
+ ```bash
50
+ python -m tools.api_server --llama-checkpoint-path checkpoints/fish-agent-v0.1-3b/ --mode agent --compile
51
+ ```
52
+
53
+ O argumento `--compile` só suporta Python < 3.12, o que aumentará muito a velocidade de geração de tokens.
54
+
55
+ Não será compilado de uma vez (lembre-se).
56
+
57
+ Então abra outro terminal e use o comando:
58
+
59
+ ```bash
60
+ python -m tools.e2e_webui
61
+ ```
62
+
63
+ Isso criará uma WebUI Gradio no dispositivo.
64
+
65
+ Quando você usar o modelo pela primeira vez, ele irá compilar (se `--compile` estiver True) por um curto período, então aguarde com paciência.
66
+
67
+ ## Gradio Webui
68
+ <p align="center">
69
+ <img src="../../assets/figs/agent_gradio.png" width="75%">
70
+ </p>
71
+
72
+ Divirta-se!
73
+
74
+ ## Desempenho
75
+
76
+ Em nossos testes, um laptop com 4060 mal consegue rodar, ficando muito sobrecarregado, gerando apenas cerca de 8 tokens/s. A 4090 gera cerca de 95 tokens/s com compilação, que é o que recomendamos.
77
+
78
+ # Sobre o Agente
79
+
80
+ A demo é uma versão alpha inicial de teste, a velocidade de inferência precisa ser otimizada, e há muitos bugs aguardando correção. Se você encontrou um bug ou quer corrigi-lo, ficaremos muito felizes em receber uma issue ou um pull request.
docs/requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ mkdocs-material
2
+ mkdocs-static-i18n[material]
3
+ mkdocs[i18n]
docs/stylesheets/extra.css ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ .md-grid {
2
+ max-width: 1440px;
3
+ }
docs/zh/finetune.md ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 微调
2
+
3
+ 显然, 当你打开这个页面的时候, 你已经对预训练模型 zero-shot 的效果不算满意. 你想要微调一个模型, 使得它在你的数据集上表现更好.
4
+
5
+ 在目前版本,你只需要微调'LLAMA'部分即可.
6
+
7
+ ## LLAMA 微调
8
+ ### 1. 准备数据集
9
+
10
+ ```
11
+ .
12
+ ├── SPK1
13
+ │ ├── 21.15-26.44.lab
14
+ │ ├── 21.15-26.44.mp3
15
+ │ ├── 27.51-29.98.lab
16
+ │ ├── 27.51-29.98.mp3
17
+ │ ├── 30.1-32.71.lab
18
+ │ └── 30.1-32.71.mp3
19
+ └── SPK2
20
+ ├── 38.79-40.85.lab
21
+ └── 38.79-40.85.mp3
22
+ ```
23
+
24
+ 你需要将数据集转为以上格式, 并放到 `data` 下, 音频后缀可以为 `.mp3`, `.wav` 或 `.flac`, 标注文件后缀建议为 `.lab`.
25
+
26
+ !!! info
27
+ 标注文件 `.lab` 仅需包含音频的转写文本,无需遵循特殊格式要求。例如,如果 `hi.mp3` 中的内容是“你好,再见。”,那么 `hi.lab` 文件中只需包含一行文本:“你好,再见”。
28
+
29
+ !!! warning
30
+ 建议先对数据集进行响度匹配, 你可以使用 [fish-audio-preprocess](https://github.com/fishaudio/audio-preprocess) 来完成这一步骤.
31
+ ```bash
32
+ fap loudness-norm data-raw data --clean
33
+ ```
34
+
35
+ ### 2. 批量提取语义 token
36
+
37
+ 确保你已经下载了 vqgan 权重, 如果没有, 请运行以下命令:
38
+
39
+ ```bash
40
+ huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
41
+ ```
42
+
43
+ 对于中国大陆用户, 可使用 mirror 下载.
44
+
45
+ ```bash
46
+ HF_ENDPOINT=https://hf-mirror.com huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
47
+ ```
48
+
49
+ 随后可运行以下命令来提取语义 token:
50
+
51
+ ```bash
52
+ python tools/vqgan/extract_vq.py data \
53
+ --num-workers 1 --batch-size 16 \
54
+ --config-name "firefly_gan_vq" \
55
+ --checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth"
56
+ ```
57
+
58
+ !!! note
59
+ 你可以调整 `--num-workers` 和 `--batch-size` 来提高提取速度, 但是请注意不要超过你的显存限制.
60
+
61
+ 该命令会在 `data` 目录下创建 `.npy` 文件, 如下所示:
62
+
63
+ ```
64
+ .
65
+ ├── SPK1
66
+ │ ├── 21.15-26.44.lab
67
+ │ ├── 21.15-26.44.mp3
68
+ │ ├── 21.15-26.44.npy
69
+ │ ├── 27.51-29.98.lab
70
+ │ ├── 27.51-29.98.mp3
71
+ │ ├── 27.51-29.98.npy
72
+ │ ├── 30.1-32.71.lab
73
+ │ ├── 30.1-32.71.mp3
74
+ │ └── 30.1-32.71.npy
75
+ └── SPK2
76
+ ├── 38.79-40.85.lab
77
+ ├── 38.79-40.85.mp3
78
+ └── 38.79-40.85.npy
79
+ ```
80
+
81
+ ### 3. 打包数据集为 protobuf
82
+
83
+ ```bash
84
+ python tools/llama/build_dataset.py \
85
+ --input "data" \
86
+ --output "data/protos" \
87
+ --text-extension .lab \
88
+ --num-workers 16
89
+ ```
90
+
91
+ 命令执行完毕后, 你应该能在 `data` 目录下看到 `protos` 文件.
92
+
93
+
94
+ ### 4. 最后, 使用 LoRA 进行微调
95
+
96
+ 同样的, 请确保你已经下载了 `LLAMA` 权重, 如果没有, 请运行以下命令:
97
+
98
+ ```bash
99
+ huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
100
+ ```
101
+
102
+ 对于中国大陆用户, 可使用 mirror 下载.
103
+
104
+ ```bash
105
+ HF_ENDPOINT=https://hf-mirror.com huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
106
+ ```
107
+
108
+ 最后, 你可以运行以下命令来启动微调:
109
+
110
+ ```bash
111
+ python fish_speech/train.py --config-name text2semantic_finetune \
112
+ project=$project \
113
+ [email protected]_config=r_8_alpha_16
114
+ ```
115
+
116
+ !!! note
117
+ 你可以通过修改 `fish_speech/configs/text2semantic_finetune.yaml` 来修改训练参数如 `batch_size`, `gradient_accumulation_steps` 等, 来适应你的显存.
118
+
119
+ !!! note
120
+ 对于 Windows 用户, 你可以使用 `trainer.strategy.process_group_backend=gloo` 来避免 `nccl` 的问题.
121
+
122
+ 训练结束后, 你可以参考 [推理](inference.md) 部分来测试你的模型.
123
+
124
+ !!! info
125
+ 默认配置下, 基本只会学到说话人的发音方式, 而不包含音色, 你依然需要使用 prompt 来保证音色的稳定性.
126
+ 如果你想要学到音色, 请将训练步数调大, 但这有可能会导致过拟合.
127
+
128
+ 训练完成后, 你需要先将 loRA 的权重转为普通权重, 然后再进行推理.
129
+
130
+ ```bash
131
+ python tools/llama/merge_lora.py \
132
+ --lora-config r_8_alpha_16 \
133
+ --base-weight checkpoints/fish-speech-1.5 \
134
+ --lora-weight results/$project/checkpoints/step_000000010.ckpt \
135
+ --output checkpoints/fish-speech-1.5-yth-lora/
136
+ ```
137
+
138
+ !!! note
139
+ 你也可以尝试其他的 checkpoint, 我们建议你使用最早的满足你要求的 checkpoint, 他们通常在 OOD 上表现更好.
docs/zh/index.md ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 介绍
2
+
3
+ <div>
4
+ <a target="_blank" href="https://discord.gg/Es5qTB9BcN">
5
+ <img alt="Discord" src="https://img.shields.io/discord/1214047546020728892?color=%23738ADB&label=Discord&logo=discord&logoColor=white&style=flat-square"/>
6
+ </a>
7
+ <a target="_blank" href="http://qm.qq.com/cgi-bin/qm/qr?_wv=1027&k=jCKlUP7QgSm9kh95UlBoYv6s1I-Apl1M&authKey=xI5ttVAp3do68IpEYEalwXSYZFdfxZSkah%2BctF5FIMyN2NqAa003vFtLqJyAVRfF&noverify=0&group_code=593946093">
8
+ <img alt="QQ" src="https://img.shields.io/badge/QQ Group-%2312B7F5?logo=tencent-qq&logoColor=white&style=flat-square"/>
9
+ </a>
10
+ <a target="_blank" href="https://hub.docker.com/r/fishaudio/fish-speech">
11
+ <img alt="Docker" src="https://img.shields.io/docker/pulls/fishaudio/fish-speech?style=flat-square&logo=docker"/>
12
+ </a>
13
+ </div>
14
+
15
+ !!! warning "警告"
16
+ 我们不对代码库的任何非法使用承担任何责任. 请参阅您当地关于 DMCA (数字千年法案) 和其他相关法律法规. <br/>
17
+ 此代码库与所有模型根据 CC-BY-NC-SA-4.0 许可证发布.
18
+
19
+ <p align="center">
20
+ <img src="../assets/figs/diagram.png" width="75%">
21
+ </p>
22
+
23
+ ## 要求
24
+
25
+ - GPU 内存: 4GB (用于推理), 8GB (用于微调)
26
+ - 系统: Linux, Windows
27
+
28
+ ## Windows 配置
29
+
30
+ Windows 专业用户可以考虑 WSL2 或 docker 来运行代码库。
31
+
32
+ ```bash
33
+ # 创建一个 python 3.10 虚拟环境, 你也可以用 virtualenv
34
+ conda create -n fish-speech python=3.10
35
+ conda activate fish-speech
36
+
37
+ # 安装 pytorch
38
+ pip3 install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu121
39
+
40
+ # 安装 fish-speech
41
+ pip3 install -e .
42
+
43
+ # (开启编译加速) 安装 triton-windows
44
+ pip install https://github.com/AnyaCoder/fish-speech/releases/download/v0.1.0/triton_windows-0.1.0-py3-none-any.whl
45
+ ```
46
+
47
+ Windows 非专业用户可考虑以下为免 Linux 环境的基础运行方法(附带模型编译功能,即 `torch.compile`):
48
+
49
+ 1. 解压项目压缩包。
50
+ 2. 点击 `install_env.bat` 安装环境。
51
+ 3. 若需要开启编译加速则执行这一步:
52
+ 1. 使用如下链接下载 LLVM 编译器。
53
+ - [LLVM-17.0.6(原站站点下载)](https://huggingface.co/fishaudio/fish-speech-1/resolve/main/LLVM-17.0.6-win64.exe?download=true)
54
+ - [LLVM-17.0.6(镜像站点下载)](https://hf-mirror.com/fishaudio/fish-speech-1/resolve/main/LLVM-17.0.6-win64.exe?download=true)
55
+ - 下载完 `LLVM-17.0.6-win64.exe` 后,双击进行安装,选择合适的安装位置,最重要的是勾选 `Add Path to Current User` 添加环境变量。
56
+ - 确认安装完成。
57
+ 2. 下载安装 Microsoft Visual C++ 可再发行程序包,解决潜在 .dll 丢失问题。
58
+ - [MSVC++ 14.40.33810.0 下载](https://aka.ms/vs/17/release/vc_redist.x64.exe)
59
+ 3. 下载安装 Visual Studio 社区版以获取 MSVC++ 编译工具, 解决 LLVM 的头文件依赖问题。
60
+ - [Visual Studio 下载](https://visualstudio.microsoft.com/zh-hans/downloads/)
61
+ - 安装好 Visual Studio Installer 之后,下载 Visual Studio Community 2022
62
+ - 如下图点击`修改`按钮,找到`使用C++的桌面开发`项,勾选下载
63
+ 4. 下载安装 [CUDA Toolkit 12.x](https://developer.nvidia.com/cuda-12-1-0-download-archive?target_os=Windows&target_arch=x86_64)
64
+ 4. 双击 `start.bat` 打开训练推理 WebUI 管理界面. 如有需要,可照下列提示修改`API_FLAGS`.
65
+
66
+ !!! info "可选"
67
+
68
+ 想启动 推理 WebUI 界面?编辑项目根目录下的 `API_FLAGS.txt`, 前三行修改成如下格式:
69
+ ```
70
+ --infer
71
+ # --api
72
+ # --listen ...
73
+ ...
74
+ ```
75
+
76
+ !!! info "可选"
77
+
78
+ 想启动 API 服务器?编辑项目根目录下的 `API_FLAGS.txt`, 前三行修改成如下格式:
79
+ ```
80
+ # --infer
81
+ --api
82
+ --listen ...
83
+ ...
84
+ ```
85
+
86
+ !!! info "可选"
87
+
88
+ 双击 `run_cmd.bat` 进入本项目的 conda/python 命令行环境
89
+
90
+ ## Linux 配置
91
+
92
+ 有关详细信息,请参见 [pyproject.toml](../../pyproject.toml)。
93
+ ```bash
94
+ # 创建一个 python 3.10 虚拟环境, 你也可以用 virtualenv
95
+ conda create -n fish-speech python=3.10
96
+ conda activate fish-speech
97
+
98
+ # 安装 pytorch
99
+ pip3 install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1
100
+
101
+ # (Ubuntu / Debian 用户) 安装 sox + ffmpeg
102
+ apt install libsox-dev ffmpeg
103
+
104
+ # (Ubuntu / Debian 用户) 安装 pyaudio
105
+ apt install build-essential \
106
+ cmake \
107
+ libasound-dev \
108
+ portaudio19-dev \
109
+ libportaudio2 \
110
+ libportaudiocpp0
111
+
112
+ # 安装 fish-speech
113
+ pip3 install -e .[stable]
114
+ ```
115
+
116
+ ## macos 配置
117
+
118
+ 如果您想在 MPS 上进行推理,请添加 `--device mps` 标志。
119
+ 有关推理速度的比较,请参考 [此 PR](https://github.com/fishaudio/fish-speech/pull/461#issuecomment-2284277772)。
120
+
121
+ !!! 警告
122
+ `compile` 选项在 Apple Silicon 设备上尚未正式支持,因此推理速度没有提升的保证。
123
+
124
+ ```bash
125
+ # create a python 3.10 virtual environment, you can also use virtualenv
126
+ conda create -n fish-speech python=3.10
127
+ conda activate fish-speech
128
+ # install pytorch
129
+ pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1
130
+ # install fish-speech
131
+ pip install -e .[stable]
132
+ ```
133
+
134
+ ## Docker 配置
135
+
136
+ 1. 安装 NVIDIA Container Toolkit:
137
+
138
+ Docker 如果想使用 GPU 进行模型训练和推理,需要安装 NVIDIA Container Toolkit :
139
+
140
+ 对于 Ubuntu 用户:
141
+
142
+ ```bash
143
+ # 添加远程仓库
144
+ curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
145
+ && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
146
+ sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
147
+ sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
148
+ # 安装 nvidia-container-toolkit
149
+ sudo apt-get update
150
+ sudo apt-get install -y nvidia-container-toolkit
151
+ # 重启 Docker 服务
152
+ sudo systemctl restart docker
153
+ ```
154
+
155
+ 对于使用其他 Linux 发行版的用户,安装指南请参考:[NVIDIA Container Toolkit Install-guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)。
156
+
157
+ 注:对于中国大陆的用户,您可能需要使用代理来完成相关工具的安装。
158
+
159
+ 2. 拉取并运行 fish-speech 镜像
160
+
161
+ ```shell
162
+ # 拉取镜像
163
+ docker pull fishaudio/fish-speech:latest-dev
164
+ # 运行镜像
165
+ docker run -it \
166
+ --name fish-speech \
167
+ --gpus all \
168
+ -p 7860:7860 \
169
+ fishaudio/fish-speech:latest-dev \
170
+ zsh
171
+ # 如果需要使用其他端口,请修改 -p 参数为 YourPort:7860
172
+ ```
173
+
174
+ 3. 下载模型依赖
175
+
176
+ 确保您在 docker 容器内的终端,然后再从我们的 huggingface 仓库下载所需的 `vqgan` 和 `llama` 模型。
177
+
178
+ ```bash
179
+ huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
180
+ ```
181
+
182
+ 对于中国大陆用户,可以通过镜像站下载。
183
+
184
+ ```bash
185
+ HF_ENDPOINT=https://hf-mirror.com huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
186
+ ```
187
+
188
+ 4. 配置环境变量,访问 WebUI
189
+
190
+ 在 docker 容器内的终端,输入 `export GRADIO_SERVER_NAME="0.0.0.0"` ,从而让外部可以访问 docker 内的 gradio 服务。
191
+ 接着在 docker 容器内的终端,输入 `python tools/run_webui.py` 即可开启 WebUI 服务。
192
+
193
+ 如果是 WSL 或者是 MacOS ,访问 [http://localhost:7860](http://localhost:7860) 即可打开 WebUI 界面。
194
+
195
+ 如果是部署在服务器上,更换 localhost 为您的服务器 ip 即可。
196
+
197
+ ## 更新日志
198
+
199
+ - 2024/09/10: 更新了 Fish-Speech 到 1.4, 增加了数据集大小, quantizer n_groups 4 -> 8.
200
+ - 2024/07/02: 更新了 Fish-Speech 到 1.2 版本,移除 VITS Decoder,同时极大幅度提升 zero-shot 能力.
201
+ - 2024/05/10: 更新了 Fish-Speech 到 1.1 版本,引入了 VITS Decoder 来降低口胡和提高音色相似度.
202
+ - 2024/04/22: 完成了 Fish-Speech 1.0 版本, 大幅修改了 VQGAN 和 LLAMA 模型.
203
+ - 2023/12/28: 添加了 `lora` 微调支持.
204
+ - 2023/12/27: 添加了 `gradient checkpointing`, `causual sampling` 和 `flash-attn` 支持.
205
+ - 2023/12/19: 更新了 Webui 和 HTTP API.
206
+ - 2023/12/18: 更新了微调文档和相关例子.
207
+ - 2023/12/17: 更新了 `text2semantic` 模型, 支持无音素模式.
208
+ - 2023/12/13: 测试版发布, 包含 VQGAN 模型和一个基于 LLAMA 的语言模型 (只支持音素).
209
+
210
+ ## 致谢
211
+
212
+ - [VITS2 (daniilrobnikov)](https://github.com/daniilrobnikov/vits2)
213
+ - [Bert-VITS2](https://github.com/fishaudio/Bert-VITS2)
214
+ - [GPT VITS](https://github.com/innnky/gpt-vits)
215
+ - [MQTTS](https://github.com/b04901014/MQTTS)
216
+ - [GPT Fast](https://github.com/pytorch-labs/gpt-fast)
217
+ - [Transformers](https://github.com/huggingface/transformers)
218
+ - [GPT-SoVITS](https://github.com/RVC-Boss/GPT-SoVITS)
docs/zh/inference.md ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 推理
2
+
3
+ 推理支持命令行, http api, 以及 webui 三种方式.
4
+
5
+ !!! note
6
+ 总的来说, 推理分为几个部分:
7
+
8
+ 1. 给定一段 ~10 秒的语音, 将它用 VQGAN 编码.
9
+ 2. 将编码后的语义 token 和对应文本输入语言模型作为例子.
10
+ 3. 给定一段新文本, 让模型生成对应的语义 token.
11
+ 4. 将生成的语义 token 输入 VQGAN 解码, 生成对应的语音.
12
+
13
+ ## 命令行推理
14
+
15
+ 从我们的 huggingface 仓库下载所需的 `vqgan` 和 `llama` 模型。
16
+
17
+ ```bash
18
+ huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
19
+ ```
20
+
21
+ 对于中国大陆用户,可使用 mirror 下载。
22
+
23
+ ```bash
24
+ HF_ENDPOINT=https://hf-mirror.com huggingface-cli download fishaudio/fish-speech-1.5 --local-dir checkpoints/fish-speech-1.5
25
+ ```
26
+
27
+ ### 1. 从语音生成 prompt:
28
+
29
+ !!! note
30
+ 如果你打算让模型随机选择音色, 你可以跳过这一步.
31
+
32
+ ```bash
33
+ python tools/vqgan/inference.py \
34
+ -i "paimon.wav" \
35
+ --checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth"
36
+ ```
37
+
38
+ 你应该能得到一个 `fake.npy` 文件.
39
+
40
+ ### 2. 从文本生成语义 token:
41
+
42
+ ```bash
43
+ python tools/llama/generate.py \
44
+ --text "要转换的文本" \
45
+ --prompt-text "你的参考文本" \
46
+ --prompt-tokens "fake.npy" \
47
+ --checkpoint-path "checkpoints/fish-speech-1.5" \
48
+ --num-samples 2 \
49
+ --compile
50
+ ```
51
+
52
+ 该命令会在工作目录下创建 `codes_N` 文件, 其中 N 是从 0 开始的整数.
53
+
54
+ !!! note
55
+ 您可能希望使用 `--compile` 来融合 cuda 内核以实现更快的推理 (~30 个 token/秒 -> ~500 个 token/秒).
56
+ 对应的, 如果你不打算使用加速, 你可以注释掉 `--compile` 参数.
57
+
58
+ !!! info
59
+ 对于不支持 bf16 的 GPU, 你可能需要使用 `--half` 参数.
60
+
61
+ ### 3. 从语义 token 生成人声:
62
+
63
+ #### VQGAN 解码
64
+
65
+ ```bash
66
+ python tools/vqgan/inference.py \
67
+ -i "codes_0.npy" \
68
+ --checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth"
69
+ ```
70
+
71
+ ## HTTP API 推理
72
+
73
+ 运行以下命令来启动 HTTP 服务:
74
+
75
+ ```bash
76
+ python -m tools.api_server \
77
+ --listen 0.0.0.0:8080 \
78
+ --llama-checkpoint-path "checkpoints/fish-speech-1.5" \
79
+ --decoder-checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth" \
80
+ --decoder-config-name firefly_gan_vq
81
+ ```
82
+ > 如果你想要加速推理,可以加上`--compile`参数。
83
+
84
+ 推荐中国大陆用户运行以下命令来启动 HTTP 服务:
85
+ ```bash
86
+ HF_ENDPOINT=https://hf-mirror.com python -m ...(同上)
87
+ ```
88
+
89
+ 随后, 你可以在 `http://127.0.0.1:8080/` 中查看并测试 API.
90
+
91
+ 下面是使用`tools/api_client.py`发送请求的示例。
92
+
93
+ ```bash
94
+ python -m tools.api_client \
95
+ --text "要输入的文本" \
96
+ --reference_audio "参考音频路径" \
97
+ --reference_text "参考音频的文本内容" \
98
+ --streaming True
99
+ ```
100
+
101
+ 上面的命令表示按照参考音频的信息,合成所需的音频并流式返回.
102
+
103
+ 下面的示例展示了, 可以一次使用**多个** `参考音频路径` 和 `参考音频的文本内容`。在命令里用空格隔开即可。
104
+ ```bash
105
+ python -m tools.api_client \
106
+ --text "要输入的文本" \
107
+ --reference_audio "参考音频路径1" "参考音频路径2" \
108
+ --reference_text "参考音频的文本内容1" "参考音频的文本内容2"\
109
+ --streaming False \
110
+ --output "generated" \
111
+ --format "mp3"
112
+ ```
113
+
114
+ 上面的命令表示按照多个参考音频的信息,合成所需的`MP3`格式音频,并保存为当前目录的`generated.mp3`文件。
115
+
116
+ 还可以用`--reference_id`(仅能用一个)来代替`--reference_audio`和`--reference_text`, 前提是在项目根目录下创建`references/<your reference_id>`文件夹,
117
+ 里面放上任意对音频与标注文本。 目前支持的参考音频最多加起来总时长90s。
118
+
119
+ !!! info
120
+ 要了解有关可用参数的更多信息,可以使用命令`python -m tools.api_client -h`
121
+
122
+ ## GUI 推理
123
+ [下载客户端](https://github.com/AnyaCoder/fish-speech-gui/releases)
124
+
125
+ ## WebUI 推理
126
+
127
+ 你可以使用以下命令来启动 WebUI:
128
+
129
+ ```bash
130
+ python -m tools.webui \
131
+ --llama-checkpoint-path "checkpoints/fish-speech-1.5" \
132
+ --decoder-checkpoint-path "checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth" \
133
+ --decoder-config-name firefly_gan_vq
134
+ ```
135
+ > 如果你想要加速推理,可以加上`--compile`参数。
136
+
137
+ !!! note
138
+ 你可以提前将label文件和参考音频文件保存到主目录下的 `references` 文件夹(需要自行创建),这样你可以直接在WebUI中调用它们。
139
+
140
+ !!! note
141
+ 你可以使用 Gradio 环境变量, 如 `GRADIO_SHARE`, `GRADIO_SERVER_PORT`, `GRADIO_SERVER_NAME` 来配置 WebUI.
142
+
143
+ 祝大家玩得开心!
docs/zh/samples.md ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 例子
2
+
3
+ v1.4 演示已更新至[此处](https://speech.fish.audio/samples/)。
4
+
5
+ v1.2 的样本可以在 [Bilibili](https://www.bilibili.com/video/BV1wz421B71D/) 观看。
6
+
7
+ 以下样本来自 v1.1 版本的模型。
8
+
9
+ ## 中文句子 1
10
+ ```
11
+ 人间灯火倒映湖中,她的渴望让静水泛起涟漪。若代价只是孤独,那就让这份愿望肆意流淌。
12
+ 流入她所注视的世间,也流入她如湖水般澄澈的目光。
13
+ ```
14
+
15
+ <table>
16
+ <thead>
17
+ <tr>
18
+ <th>说话人</th>
19
+ <th>输入音频</th>
20
+ <th>合成音频</th>
21
+ </tr>
22
+ </thead>
23
+ <tbody>
24
+ <tr>
25
+ <td>纳西妲 (原神)</td>
26
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/0_input.wav" /></td>
27
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/0_output.wav" /></td>
28
+ </tr>
29
+ <tr>
30
+ <td>钟离 (原神)</td>
31
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/1_input.wav" /></td>
32
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/1_output.wav" /></td>
33
+ </tr>
34
+ <tr>
35
+ <td>芙宁娜 (原神)</td>
36
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/2_input.wav" /></td>
37
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/2_output.wav" /></td>
38
+ </tr>
39
+ <tr>
40
+ <td>随机说话人 1</td>
41
+ <td> - </td>
42
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/4_output.wav" /></td>
43
+ </tr>
44
+ <tr>
45
+ <td>随机说话人 2</td>
46
+ <td> - </td>
47
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/5_output.wav" /></td>
48
+ </tr>
49
+ </tbody>
50
+ </table>
51
+
52
+
53
+ ## 中文句子 2
54
+ ```
55
+ 你们这个是什么群啊,你们这是害人不浅啊你们这个群!谁是群主,出来!真的太过分了。你们搞这个群干什么?
56
+ 我儿子每一科的成绩都不过那个平均分呐,他现在初二,你叫我儿子怎么办啊?他现在还不到高中啊?
57
+ 你们害死我儿子了!快点出来你这个群主!再这样我去报警了啊!我跟你们说你们这一帮人啊,一天到晚啊,
58
+ 搞这些什么游戏啊,动漫啊,会害死你们的,你们没有前途我跟你说。你们这九百多个人,好好学习不好吗?
59
+ 一天到晚在上网。有什么意思啊?麻烦你重视一下你们的生活的目标啊?有一点学习目标行不行?一天到晚上网是不是人啊?
60
+ ```
61
+
62
+ <table>
63
+ <thead>
64
+ <tr>
65
+ <th>说话人</th>
66
+ <th>输入音频</th>
67
+ <th>合成音频</th>
68
+ </tr>
69
+ </thead>
70
+ <tbody>
71
+ <tr>
72
+ <td>纳西妲 (原神)</td>
73
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/0_input.wav" /></td>
74
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/6_output.wav" /></td>
75
+ </tr>
76
+ <tr>
77
+ <td>随机说话人</td>
78
+ <td> - </td>
79
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/7_output.wav" /></td>
80
+ </tr>
81
+ </tbody>
82
+ </table>
83
+
84
+
85
+ ## 中文句子 3
86
+ ```
87
+ 大家好,我是 Fish Audio 开发的开源文本转语音模型。经过十五万小时的数据训练,
88
+ 我已经能够熟练掌握中文、日语和英语,我的语言处理能力接近人类水平,声音表现形式丰富多变。
89
+ 作为一个仅有亿级参数的模型,我相信社区成员能够在个人设备上轻松运行和微调,让我成为您的私人语音助手。
90
+ ```
91
+
92
+
93
+ <table>
94
+ <thead>
95
+ <tr>
96
+ <th>说话人</th>
97
+ <th>输入音频</th>
98
+ <th>合成音频</th>
99
+ </tr>
100
+ </thead>
101
+ <tbody>
102
+ <tr>
103
+ <td>随机说话人</td>
104
+ <td> - </td>
105
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/zh/8_output.wav" /></td>
106
+ </tr>
107
+ </tbody>
108
+ </table>
109
+
110
+ ## 英文句子 1
111
+
112
+ ```
113
+ In the realm of advanced technology, the evolution of artificial intelligence stands as a
114
+ monumental achievement. This dynamic field, constantly pushing the boundaries of what
115
+ machines can do, has seen rapid growth and innovation. From deciphering complex data
116
+ patterns to driving cars autonomously, AI's applications are vast and diverse.
117
+ ```
118
+
119
+ <table>
120
+ <thead>
121
+ <tr>
122
+ <th>说话人</th>
123
+ <th>输入音频</th>
124
+ <th>合成音频</th>
125
+ </tr>
126
+ </thead>
127
+ <tbody>
128
+ <tr>
129
+ <td>随机说话人 1</td>
130
+ <td> - </td>
131
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/en/0_output.wav" /></td>
132
+ </tr>
133
+ <tr>
134
+ <td>随机说话人 2</td>
135
+ <td> - </td>
136
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/en/1_output.wav" /></td>
137
+ </tr>
138
+ </tbody>
139
+ </table>
140
+
141
+ ## 英文句子 2
142
+ ```
143
+ Hello everyone, I am an open-source text-to-speech model developed by
144
+ Fish Audio. After training with 150,000 hours of data, I have become proficient
145
+ in Chinese, Japanese, and English, and my language processing abilities
146
+ are close to human level. My voice is capable of a wide range of expressions.
147
+ As a model with only hundreds of millions of parameters, I believe community
148
+ members can easily run and fine-tune me on their personal devices, allowing
149
+ me to serve as your personal voice assistant.
150
+ ```
151
+
152
+ <table>
153
+ <thead>
154
+ <tr>
155
+ <th>说话人</th>
156
+ <th>输入音频</th>
157
+ <th>合成音频</th>
158
+ </tr>
159
+ </thead>
160
+ <tbody>
161
+ <tr>
162
+ <td>随机说话人</td>
163
+ <td> - </td>
164
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/en/2_output.wav" /></td>
165
+ </tr>
166
+ </tbody>
167
+ </table>
168
+
169
+ ## 日文句子 1
170
+
171
+ ```
172
+ 先進技術の領域において、人工知能の進化は画期的な成果として立っています。常に機械ができることの限界を
173
+ 押し広げているこのダイナミックな分野は、急速な成長と革新を見せています。複雑なデータパターンの解読か
174
+ ら自動運転車の操縦まで、AIの応用は広範囲に及びます。
175
+ ```
176
+
177
+
178
+ <table>
179
+ <thead>
180
+ <tr>
181
+ <th>说话人</th>
182
+ <th>输入音频</th>
183
+ <th>合成音频</th>
184
+ </tr>
185
+ </thead>
186
+ <tbody>
187
+ <tr>
188
+ <td>随机说话人 1</td>
189
+ <td> - </td>
190
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/ja/0_output.wav" /></td>
191
+ </tr>
192
+ <tr>
193
+ <td>随机说话人 2</td>
194
+ <td> - </td>
195
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/ja/1_output.wav" /></td>
196
+ </tr>
197
+ </tbody>
198
+ </table>
199
+
200
+ ## 日文句子 2
201
+ ```
202
+ 皆さん、こんにちは。私はフィッシュオーディオによって開発されたオープンソースのテ
203
+ キストから音声への変換モデルです。15万時間のデータトレーニングを経て、
204
+ 中国語、日本語、英語を熟知しており、言語処理能力は人間に近いレベルです。
205
+ 声の表現も多彩で豊かです。数億のパラメータを持つこのモデルは、コミュニティ
206
+ のメンバーが個人のデバイスで簡単に実行し、微調整することができると
207
+ 信じています。これにより、私を個人の音声アシスタントとして活用できます。
208
+ ```
209
+
210
+ <table>
211
+ <thead>
212
+ <tr>
213
+ <th>说话人</th>
214
+ <th>输入音频</th>
215
+ <th>合成音频</th>
216
+ </tr>
217
+ </thead>
218
+ <tbody>
219
+ <tr>
220
+ <td>随机说话人</td>
221
+ <td> - </td>
222
+ <td><audio controls preload="auto" src="https://demo-r2.speech.fish.audio/v1.1-sft-large/ja/2_output.wav" /></td>
223
+ </tr>
224
+ </tbody>
225
+ </table>
docs/zh/start_agent.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 启动 Agent
2
+
3
+ ## 要求
4
+
5
+ - GPU 显存: 至少 8GB(在量化的条件下),推荐 16GB 及以上
6
+ - 硬盘使用量: 10GB
7
+
8
+ ## 下载模型
9
+
10
+ 你可以执行下面的语句来获取模型:
11
+
12
+ ```bash
13
+ huggingface-cli download fishaudio/fish-agent-v0.1-3b --local-dir checkpoints/fish-agent-v0.1-3b
14
+ ```
15
+
16
+ 如果你处于国内网络,首先执行:
17
+
18
+ ```bash
19
+ export HF_ENDPOINT=https://hf-mirror.com
20
+ ```
21
+
22
+ 把他们放进名为 'checkpoints' 的文件夹内。
23
+
24
+ 你同样需要 fish-speech 的模型,关于如何获取 fish-speech 模型请查看[inference](inference.md)。
25
+
26
+ 完成后你的 checkpoints 文件夹中会有两个子文件夹:`checkpoints/fish-speech-1.4` 和 `checkpoints/fish-agent-v0.1-3b`。
27
+
28
+ ## Environment Prepare
29
+
30
+ 如果你已经有了 Fish-Speech 环境,你可以在安装下面的包的前提下直接使用:
31
+
32
+ ```bash
33
+ pip install cachetools
34
+ ```
35
+
36
+ !!! note
37
+ 请使用小于 3.12 的 python 版本使 compile 可用
38
+
39
+ 如果你没有 Fish-Speech 环境,请执行下面的语句来构造你的环境:
40
+
41
+ ```bash
42
+ sudo apt-get install portaudio19-dev
43
+
44
+ pip install -e .[stable]
45
+ ```
46
+
47
+ ## 链接 Agent.
48
+
49
+ 你需要使用以下指令来构建 fish-agent
50
+
51
+ ```bash
52
+ python -m tools.api_server --llama-checkpoint-path checkpoints/fish-agent-v0.1-3b/ --mode agent --compile
53
+ ```
54
+
55
+ `--compile`只能在小于 3.12 版本的 Python 使用,这个功能可以极大程度上提高生成速度。
56
+
57
+ 你需要哦注意 compile 需要进行一段时间.
58
+
59
+ 然后启动另一个终端并执行:
60
+
61
+ ```bash
62
+ python -m tools.e2e_webui
63
+ ```
64
+
65
+ 这会在设备上创建一个 Gradio WebUI。
66
+
67
+ 每当进行第一轮对话的时候,模型需要 compile 一段时间,请耐心等待
68
+
69
+ ## Gradio Webui
70
+
71
+ <p align="center">
72
+ <img src="../../assets/figs/agent_gradio.png" width="75%">
73
+ </p>
74
+
75
+ 玩得开心!
76
+
77
+ ## Performance
78
+
79
+ 在我们的测试环境下, 4060 laptop GPU 只能刚刚运行该模型,只有大概 8 tokens/s。 4090 CPU 可以在编译后达到 95 tokens/s,我们推荐使用至少 4080 以上级别的 GPU 来达到较好体验。
80
+
81
+ # About Agent
82
+
83
+ 该模型仍处于测试阶段。如果你发现了问题,请给我们提 issue 或者 pull request,我们非常感谢。
entrypoint.sh ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ CUDA_ENABLED=${CUDA_ENABLED:-true}
4
+ DEVICE=""
5
+
6
+ if [ "${CUDA_ENABLED}" != "true" ]; then
7
+ DEVICE="--device cpu"
8
+ fi
9
+
10
+ exec python tools/run_webui.py ${DEVICE}
fish_speech.egg-info/PKG-INFO ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: fish-speech
3
+ Version: 0.1.0
4
+ Summary: Fish Speech
5
+ Author-email: Lengyue <[email protected]>
6
+ License: CC BY-NC-SA 4.0
7
+ Keywords: TTS,Speech
8
+ Classifier: Programming Language :: Python :: 3
9
+ Requires-Python: >=3.10
10
+ Description-Content-Type: text/markdown
11
+ License-File: LICENSE
12
+ Requires-Dist: numpy<=1.26.4
13
+ Requires-Dist: transformers>=4.45.2
14
+ Requires-Dist: datasets==2.18.0
15
+ Requires-Dist: lightning>=2.1.0
16
+ Requires-Dist: hydra-core>=1.3.2
17
+ Requires-Dist: tensorboard>=2.14.1
18
+ Requires-Dist: natsort>=8.4.0
19
+ Requires-Dist: einops>=0.7.0
20
+ Requires-Dist: librosa>=0.10.1
21
+ Requires-Dist: rich>=13.5.3
22
+ Requires-Dist: gradio>5.0.0
23
+ Requires-Dist: wandb>=0.15.11
24
+ Requires-Dist: grpcio>=1.58.0
25
+ Requires-Dist: kui>=1.6.0
26
+ Requires-Dist: uvicorn>=0.30.0
27
+ Requires-Dist: loguru>=0.6.0
28
+ Requires-Dist: loralib>=0.1.2
29
+ Requires-Dist: pyrootutils>=1.0.4
30
+ Requires-Dist: vector_quantize_pytorch==1.14.24
31
+ Requires-Dist: resampy>=0.4.3
32
+ Requires-Dist: einx[torch]==0.2.2
33
+ Requires-Dist: zstandard>=0.22.0
34
+ Requires-Dist: pydub
35
+ Requires-Dist: pyaudio
36
+ Requires-Dist: faster_whisper
37
+ Requires-Dist: modelscope==1.17.1
38
+ Requires-Dist: funasr==1.1.5
39
+ Requires-Dist: opencc-python-reimplemented==0.1.7
40
+ Requires-Dist: silero-vad
41
+ Requires-Dist: ormsgpack
42
+ Requires-Dist: tiktoken>=0.8.0
43
+ Requires-Dist: pydantic==2.9.2
44
+ Requires-Dist: cachetools
45
+ Provides-Extra: stable
46
+ Requires-Dist: torch<=2.4.1; extra == "stable"
47
+ Requires-Dist: torchaudio; extra == "stable"
48
+
49
+ <div align="center">
50
+ <h1>Fish Speech</h1>
51
+
52
+ **English** | [简体中文](docs/README.zh.md) | [Portuguese](docs/README.pt-BR.md) | [日本語](docs/README.ja.md) | [한국어](docs/README.ko.md) <br>
53
+
54
+ <a href="https://www.producthunt.com/posts/fish-speech-1-4?embed=true&utm_source=badge-featured&utm_medium=badge&utm_souce=badge-fish&#0045;speech&#0045;1&#0045;4" target="_blank">
55
+ <img src="https://api.producthunt.com/widgets/embed-image/v1/featured.svg?post_id=488440&theme=light" alt="Fish&#0032;Speech&#0032;1&#0046;4 - Open&#0045;Source&#0032;Multilingual&#0032;Text&#0045;to&#0045;Speech&#0032;with&#0032;Voice&#0032;Cloning | Product Hunt" style="width: 250px; height: 54px;" width="250" height="54" />
56
+ </a>
57
+ <a href="https://trendshift.io/repositories/7014" target="_blank">
58
+ <img src="https://trendshift.io/api/badge/repositories/7014" alt="fishaudio%2Ffish-speech | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/>
59
+ </a>
60
+ <br>
61
+ </div>
62
+ <br>
63
+
64
+ <div align="center">
65
+ <img src="https://count.getloli.com/get/@fish-speech?theme=asoul" /><br>
66
+ </div>
67
+
68
+ <br>
69
+
70
+ <div align="center">
71
+ <a target="_blank" href="https://discord.gg/Es5qTB9BcN">
72
+ <img alt="Discord" src="https://img.shields.io/discord/1214047546020728892?color=%23738ADB&label=Discord&logo=discord&logoColor=white&style=flat-square"/>
73
+ </a>
74
+ <a target="_blank" href="https://hub.docker.com/r/fishaudio/fish-speech">
75
+ <img alt="Docker" src="https://img.shields.io/docker/pulls/fishaudio/fish-speech?style=flat-square&logo=docker"/>
76
+ </a>
77
+ <a target="_blank" href="https://huggingface.co/spaces/fishaudio/fish-speech-1">
78
+ <img alt="Huggingface" src="https://img.shields.io/badge/🤗%20-space%20demo-yellow"/>
79
+ </a>
80
+ <a target="_blank" href="https://pd.qq.com/s/bwxia254o">
81
+ <img alt="QQ Channel" src="https://img.shields.io/badge/QQ-blue?logo=tencentqq">
82
+ </a>
83
+ </div>
84
+
85
+ This codebase is released under Apache License and all model weights are released under CC-BY-NC-SA-4.0 License. Please refer to [LICENSE](LICENSE) for more details.
86
+
87
+ ---
88
+ ## Fish Agent
89
+ We are very excited to announce that we have made our self-research agent demo open source, you can now try our agent demo online at [demo](https://fish.audio/demo/live) for instant English chat and English and Chinese chat locally by following the [docs](https://speech.fish.audio/start_agent/).
90
+
91
+ You should mention that the content is released under a **CC BY-NC-SA 4.0 licence**. And the demo is an early alpha test version, the inference speed needs to be optimised, and there are a lot of bugs waiting to be fixed. If you've found a bug or want to fix it, we'd be very happy to receive an issue or a pull request.
92
+
93
+ ## Features
94
+ ### Fish Speech
95
+
96
+ 1. **Zero-shot & Few-shot TTS:** Input a 10 to 30-second vocal sample to generate high-quality TTS output. **For detailed guidelines, see [Voice Cloning Best Practices](https://docs.fish.audio/text-to-speech/voice-clone-best-practices).**
97
+
98
+ 2. **Multilingual & Cross-lingual Support:** Simply copy and paste multilingual text into the input box—no need to worry about the language. Currently supports English, Japanese, Korean, Chinese, French, German, Arabic, and Spanish.
99
+
100
+ 3. **No Phoneme Dependency:** The model has strong generalization capabilities and does not rely on phonemes for TTS. It can handle text in any language script.
101
+
102
+ 4. **Highly Accurate:** Achieves a low CER (Character Error Rate) and WER (Word Error Rate) of around 2% for 5-minute English texts.
103
+
104
+ 5. **Fast:** With fish-tech acceleration, the real-time factor is approximately 1:5 on an Nvidia RTX 4060 laptop and 1:15 on an Nvidia RTX 4090.
105
+
106
+ 6. **WebUI Inference:** Features an easy-to-use, Gradio-based web UI compatible with Chrome, Firefox, Edge, and other browsers.
107
+
108
+ 7. **GUI Inference:** Offers a PyQt6 graphical interface that works seamlessly with the API server. Supports Linux, Windows, and macOS. [See GUI](https://github.com/AnyaCoder/fish-speech-gui).
109
+
110
+ 8. **Deploy-Friendly:** Easily set up an inference server with native support for Linux, Windows and MacOS, minimizing speed loss.
111
+
112
+ ### Fish Agent
113
+ 1. **Completely End to End:** Automatically integrates ASR and TTS parts, no need to plug-in other models, i.e., true end-to-end, not three-stage (ASR+LLM+TTS).
114
+
115
+ 2. **Timbre Control:** Can use reference audio to control the speech timbre.
116
+
117
+ 3. **Emotional:** The model can generate speech with strong emotion.
118
+
119
+ ## Disclaimer
120
+
121
+ We do not hold any responsibility for any illegal usage of the codebase. Please refer to your local laws about DMCA and other related laws.
122
+
123
+ ## Online Demo
124
+
125
+ [Fish Audio](https://fish.audio)
126
+
127
+ [Fish Agent](https://fish.audio/demo/live)
128
+
129
+ ## Quick Start for Local Inference
130
+
131
+ [inference.ipynb](/inference.ipynb)
132
+
133
+ ## Videos
134
+
135
+ #### V1.4 Demo Video: [Youtube](https://www.youtube.com/watch?v=Ghc8cJdQyKQ)
136
+
137
+ ## Documents
138
+
139
+ - [English](https://speech.fish.audio/)
140
+ - [中文](https://speech.fish.audio/zh/)
141
+ - [日本語](https://speech.fish.audio/ja/)
142
+ - [Portuguese (Brazil)](https://speech.fish.audio/pt/)
143
+
144
+ ## Samples (2024/10/02 V1.4)
145
+
146
+ - [English](https://speech.fish.audio/samples/)
147
+ - [中文](https://speech.fish.audio/zh/samples/)
148
+ - [日本語](https://speech.fish.audio/ja/samples/)
149
+ - [Portuguese (Brazil)](https://speech.fish.audio/pt/samples/)
150
+
151
+ ## Credits
152
+
153
+ - [VITS2 (daniilrobnikov)](https://github.com/daniilrobnikov/vits2)
154
+ - [Bert-VITS2](https://github.com/fishaudio/Bert-VITS2)
155
+ - [GPT VITS](https://github.com/innnky/gpt-vits)
156
+ - [MQTTS](https://github.com/b04901014/MQTTS)
157
+ - [GPT Fast](https://github.com/pytorch-labs/gpt-fast)
158
+ - [GPT-SoVITS](https://github.com/RVC-Boss/GPT-SoVITS)
159
+
160
+ ## Tech Report (V1.4)
161
+ ```bibtex
162
+ @misc{fish-speech-v1.4,
163
+ title={Fish-Speech: Leveraging Large Language Models for Advanced Multilingual Text-to-Speech Synthesis},
164
+ author={Shijia Liao and Yuxuan Wang and Tianyu Li and Yifan Cheng and Ruoyi Zhang and Rongzhi Zhou and Yijin Xing},
165
+ year={2024},
166
+ eprint={2411.01156},
167
+ archivePrefix={arXiv},
168
+ primaryClass={cs.SD},
169
+ url={https://arxiv.org/abs/2411.01156},
170
+ }
171
+ ```
172
+
173
+ ## Sponsor
174
+
175
+ <div>
176
+ <a href="https://6block.com/">
177
+ <img src="https://avatars.githubusercontent.com/u/60573493" width="100" height="100" alt="6Block Avatar"/>
178
+ </a>
179
+ <br>
180
+ <a href="https://6block.com/">Data Processing sponsor by 6Block</a>
181
+ </div>
182
+ <div>
183
+ <a href="https://www.lepton.ai/">
184
+ <img src="https://www.lepton.ai/favicons/apple-touch-icon.png" width="100" height="100" alt="Lepton Avatar"/>
185
+ </a>
186
+ <br>
187
+ <a href="https://www.lepton.ai/">Fish Audio is served on Lepton.AI</a>
188
+ </div>
fish_speech.egg-info/SOURCES.txt ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .dockerignore
2
+ .gitignore
3
+ .pre-commit-config.yaml
4
+ .project-root
5
+ .readthedocs.yaml
6
+ API_FLAGS.txt
7
+ LICENSE
8
+ README.md
9
+ docker-compose.dev.yml
10
+ dockerfile
11
+ dockerfile.dev
12
+ entrypoint.sh
13
+ inference.ipynb
14
+ install_env.bat
15
+ mkdocs.yml
16
+ pyproject.toml
17
+ pyrightconfig.json
18
+ run_cmd.bat
19
+ start.bat
20
+ .github/pull_request_template.md
21
+ .github/ISSUE_TEMPLATE/bug_report.yml
22
+ .github/ISSUE_TEMPLATE/config.yml
23
+ .github/ISSUE_TEMPLATE/feature_request.yml
24
+ .github/workflows/build-docker-image.yml
25
+ .github/workflows/docs.yml
26
+ .github/workflows/stale.yml
27
+ docs/CNAME
28
+ docs/README.ja.md
29
+ docs/README.ko.md
30
+ docs/README.pt-BR.md
31
+ docs/README.zh.md
32
+ docs/requirements.txt
33
+ docs/assets/figs/VS_1.jpg
34
+ docs/assets/figs/VS_1_pt-BR.png
35
+ docs/assets/figs/agent_gradio.png
36
+ docs/assets/figs/diagram.png
37
+ docs/assets/figs/diagrama.png
38
+ docs/assets/figs/logo-circle.png
39
+ docs/en/finetune.md
40
+ docs/en/index.md
41
+ docs/en/inference.md
42
+ docs/en/samples.md
43
+ docs/en/start_agent.md
44
+ docs/ja/finetune.md
45
+ docs/ja/index.md
46
+ docs/ja/inference.md
47
+ docs/ja/samples.md
48
+ docs/ja/start_agent.md
49
+ docs/ko/finetune.md
50
+ docs/ko/index.md
51
+ docs/ko/inference.md
52
+ docs/ko/samples.md
53
+ docs/ko/start_agent.md
54
+ docs/pt/finetune.md
55
+ docs/pt/index.md
56
+ docs/pt/inference.md
57
+ docs/pt/samples.md
58
+ docs/pt/start_agent.md
59
+ docs/stylesheets/extra.css
60
+ docs/zh/finetune.md
61
+ docs/zh/index.md
62
+ docs/zh/inference.md
63
+ docs/zh/samples.md
64
+ docs/zh/start_agent.md
65
+ fish_speech/conversation.py
66
+ fish_speech/scheduler.py
67
+ fish_speech/tokenizer.py
68
+ fish_speech/train.py
69
+ fish_speech.egg-info/PKG-INFO
70
+ fish_speech.egg-info/SOURCES.txt
71
+ fish_speech.egg-info/dependency_links.txt
72
+ fish_speech.egg-info/requires.txt
73
+ fish_speech.egg-info/top_level.txt
74
+ fish_speech/callbacks/__init__.py
75
+ fish_speech/callbacks/grad_norm.py
76
+ fish_speech/configs/base.yaml
77
+ fish_speech/configs/firefly_gan_vq.yaml
78
+ fish_speech/configs/text2semantic_finetune.yaml
79
+ fish_speech/configs/lora/r_8_alpha_16.yaml
80
+ fish_speech/datasets/concat_repeat.py
81
+ fish_speech/datasets/semantic.py
82
+ fish_speech/datasets/vqgan.py
83
+ fish_speech/datasets/protos/text-data.proto
84
+ fish_speech/datasets/protos/text_data_pb2.py
85
+ fish_speech/datasets/protos/text_data_stream.py
86
+ fish_speech/i18n/README.md
87
+ fish_speech/i18n/__init__.py
88
+ fish_speech/i18n/core.py
89
+ fish_speech/i18n/scan.py
90
+ fish_speech/i18n/locale/en_US.json
91
+ fish_speech/i18n/locale/es_ES.json
92
+ fish_speech/i18n/locale/ja_JP.json
93
+ fish_speech/i18n/locale/ko_KR.json
94
+ fish_speech/i18n/locale/pt_BR.json
95
+ fish_speech/i18n/locale/zh_CN.json
96
+ fish_speech/models/text2semantic/__init__.py
97
+ fish_speech/models/text2semantic/lit_module.py
98
+ fish_speech/models/text2semantic/llama.py
99
+ fish_speech/models/text2semantic/lora.py
100
+ fish_speech/models/vqgan/__init__.py
101
+ fish_speech/models/vqgan/utils.py
102
+ fish_speech/models/vqgan/modules/firefly.py
103
+ fish_speech/models/vqgan/modules/fsq.py
104
+ fish_speech/text/__init__.py
105
+ fish_speech/text/clean.py
106
+ fish_speech/text/spliter.py
107
+ fish_speech/text/chn_text_norm/.gitignore
108
+ fish_speech/text/chn_text_norm/README.md
109
+ fish_speech/text/chn_text_norm/__init__.py
110
+ fish_speech/text/chn_text_norm/basic_class.py
111
+ fish_speech/text/chn_text_norm/basic_constant.py
112
+ fish_speech/text/chn_text_norm/basic_util.py
113
+ fish_speech/text/chn_text_norm/cardinal.py
114
+ fish_speech/text/chn_text_norm/date.py
115
+ fish_speech/text/chn_text_norm/digit.py
116
+ fish_speech/text/chn_text_norm/fraction.py
117
+ fish_speech/text/chn_text_norm/money.py
118
+ fish_speech/text/chn_text_norm/percentage.py
119
+ fish_speech/text/chn_text_norm/telephone.py
120
+ fish_speech/text/chn_text_norm/text.py
121
+ fish_speech/utils/__init__.py
122
+ fish_speech/utils/braceexpand.py
123
+ fish_speech/utils/context.py
124
+ fish_speech/utils/file.py
125
+ fish_speech/utils/instantiators.py
126
+ fish_speech/utils/logger.py
127
+ fish_speech/utils/logging_utils.py
128
+ fish_speech/utils/rich_utils.py
129
+ fish_speech/utils/spectrogram.py
130
+ fish_speech/utils/utils.py
131
+ fish_speech/webui/launch_utils.py
132
+ fish_speech/webui/manage.py
133
+ fish_speech/webui/css/style.css
134
+ fish_speech/webui/html/footer.html
135
+ fish_speech/webui/js/animate.js
136
+ tools/api_client.py
137
+ tools/api_server.py
138
+ tools/download_models.py
139
+ tools/e2e_webui.py
140
+ tools/extract_model.py
141
+ tools/file.py
142
+ tools/fish_e2e.py
143
+ tools/run_webui.py
144
+ tools/schema.py
145
+ tools/smart_pad.py
146
+ tools/whisper_asr.py
147
+ tools/inference_engine/__init__.py
148
+ tools/inference_engine/reference_loader.py
149
+ tools/inference_engine/utils.py
150
+ tools/inference_engine/vq_manager.py
151
+ tools/llama/build_dataset.py
152
+ tools/llama/eval_in_context.py
153
+ tools/llama/generate.py
154
+ tools/llama/merge_lora.py
155
+ tools/llama/quantize.py
156
+ tools/llama/rebuild_tokenizer.py
157
+ tools/sensevoice/README.md
158
+ tools/sensevoice/__init__.py
159
+ tools/sensevoice/auto_model.py
160
+ tools/sensevoice/fun_asr.py
161
+ tools/sensevoice/vad_utils.py
162
+ tools/server/api_utils.py
163
+ tools/server/exception_handler.py
164
+ tools/server/inference.py
165
+ tools/server/model_manager.py
166
+ tools/server/model_utils.py
167
+ tools/server/views.py
168
+ tools/server/agent/__init__.py
169
+ tools/server/agent/generate.py
170
+ tools/server/agent/generation_utils.py
171
+ tools/server/agent/pre_generation_utils.py
172
+ tools/vqgan/create_train_split.py
173
+ tools/vqgan/extract_vq.py
174
+ tools/vqgan/inference.py
175
+ tools/webui/__init__.py
176
+ tools/webui/inference.py
177
+ tools/webui/variables.py
fish_speech.egg-info/dependency_links.txt ADDED
@@ -0,0 +1 @@
 
 
1
+
fish_speech.egg-info/requires.txt ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ numpy<=1.26.4
2
+ transformers>=4.45.2
3
+ datasets==2.18.0
4
+ lightning>=2.1.0
5
+ hydra-core>=1.3.2
6
+ tensorboard>=2.14.1
7
+ natsort>=8.4.0
8
+ einops>=0.7.0
9
+ librosa>=0.10.1
10
+ rich>=13.5.3
11
+ gradio>5.0.0
12
+ wandb>=0.15.11
13
+ grpcio>=1.58.0
14
+ kui>=1.6.0
15
+ uvicorn>=0.30.0
16
+ loguru>=0.6.0
17
+ loralib>=0.1.2
18
+ pyrootutils>=1.0.4
19
+ vector_quantize_pytorch==1.14.24
20
+ resampy>=0.4.3
21
+ einx[torch]==0.2.2
22
+ zstandard>=0.22.0
23
+ pydub
24
+ pyaudio
25
+ faster_whisper
26
+ modelscope==1.17.1
27
+ funasr==1.1.5
28
+ opencc-python-reimplemented==0.1.7
29
+ silero-vad
30
+ ormsgpack
31
+ tiktoken>=0.8.0
32
+ pydantic==2.9.2
33
+ cachetools
34
+
35
+ [stable]
36
+ torch<=2.4.1
37
+ torchaudio