Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from peft import PeftModel | |
| import torch | |
| # Directory where your fine-tuned Phi-2 model and associated files are stored. | |
| model_dir = "./phi2-qlora-finetuned" | |
| # Directory to store offloaded model parts (for large models). | |
| offload_dir = "./offload" | |
| # Load the tokenizer. | |
| tokenizer = AutoTokenizer.from_pretrained(model_dir) | |
| # Load the base model with offloading support. | |
| # base_model = AutoModelForCausalLM.from_pretrained( | |
| # model_dir, | |
| # device_map="auto", # Automatically use available devices (GPU/CPU). | |
| # offload_folder=offload_dir # Directory to offload layers (for larger models). | |
| # ) | |
| # CPU | |
| base_model = AutoModelForCausalLM.from_pretrained( | |
| model_dir, | |
| device_map="cpu", # Force CPU usage | |
| torch_dtype=torch.float32, # Use float32 for CPU | |
| trust_remote_code=True, | |
| offload_folder=offload_dir # Directory to offload layers (for larger models). | |
| ) | |
| # Load the adapter (PEFT) weights. | |
| model = PeftModel.from_pretrained(base_model, model_dir) | |
| def generate_response(prompt, max_new_tokens=200, temperature=0.7): | |
| """ | |
| Generate a response from the fine-tuned Phi-2 model given a prompt. | |
| """ | |
| # Tokenize the prompt and move tensors to the model's device. | |
| inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| # Generate output text using sampling. | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True, | |
| temperature=temperature | |
| ) | |
| # Decode the generated tokens and return the response. | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return response | |
| # Create a Gradio interface with example prompts. | |
| demo = gr.Interface( | |
| fn=generate_response, | |
| inputs=[ | |
| gr.Textbox(lines=4, label="Input Prompt"), | |
| gr.Slider(50, 500, value=200, label="Max New Tokens"), | |
| gr.Slider(0.0, 1.0, value=0.7, label="Temperature") | |
| ], | |
| outputs=gr.Textbox(label="Response"), | |
| title="Phi-2 Fine-tuned Chat", | |
| description="A Hugging Face Space app serving the fine-tuned Phi-2 model trained on OpenAssistant/oasst1 data.", | |
| examples=[ | |
| ["Hello, how are you today?", 150, 0.7], | |
| ["Translate this sentence from English to French: I love programming.", 200, 0.8], | |
| ["Tell me a joke about artificial intelligence.", 180, 0.6], | |
| ["what is value of 2 + 2: ", 150, 0.9], | |
| ["Explain what about economics and how does it impact the individuals financial sector: ", 250, 0.7], | |
| ["Who is Randy orton?", 200, 0.8] | |
| ] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |