kirbah's picture
Improve speed on CPU only
1f48aa4 verified
import os
import gc
import logging
from typing import Any, Dict
import torch
import yt_dlp
import gradio as gr
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from huggingface_hub import login, InferenceClient
# Set up basic logging.
logging.basicConfig(level=logging.INFO)
# -------------------------------
# Download Audio from Video URL
# -------------------------------
def download_audio(url: str) -> str:
"""
Download audio from a video URL and convert it to MP3 format.
"""
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
}
try:
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
audio_file = ydl.prepare_filename(info)
if not audio_file.endswith('.mp3'):
audio_file = audio_file.rsplit('.', 1)[0] + '.mp3'
logging.info("Audio downloaded successfully: %s", audio_file)
return audio_file
except Exception as e:
logging.error("Error downloading audio: %s", e)
raise RuntimeError("Audio download failed") from e
# ---------------------------------------
# Set Up Speech Recognition Model & Pipe
# ---------------------------------------
if torch.cuda.is_available():
model_device = "cuda"
pipeline_device = 0 # GPU device index for Hugging Face pipeline.
torch_dtype = torch.float16
speech_model_id = "openai/whisper-large-v3-turbo"
batch_size = 16
stride_length_s_tuple = (4, 2)
else:
model_device = "cpu"
pipeline_device = -1 # CPU for pipeline.
torch_dtype = torch.float32
speech_model_id = "openai/whisper-tiny"
batch_size = 2
stride_length_s_tuple = None
try:
model = AutoModelForSpeechSeq2Seq.from_pretrained(
speech_model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(model_device)
processor = AutoProcessor.from_pretrained(speech_model_id)
except Exception as e:
logging.error("Error loading the speech model: %s", e)
raise
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch_dtype,
device=pipeline_device,
)
# --------------------------------------
# Transcription and SRT Conversion
# --------------------------------------
def transcribe_audio(audio_path: str, batch_size: int) -> Dict[str, Any]:
"""
Transcribe the audio file using the configured pipeline.
"""
try:
result = pipe(
audio_path,
chunk_length_s=10,
stride_length_s=stride_length_s_tuple,
batch_size=batch_size,
return_timestamps=True,
)
return result
except Exception as e:
logging.error("Error during transcription: %s", e)
raise
def seconds_to_srt_time(seconds: float) -> str:
"""
Convert seconds to SRT time format (HH:MM:SS,mmm).
"""
if seconds is None or not isinstance(seconds, (int, float)):
return "00:00:00,000"
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
secs = int(seconds % 60)
millis = int((seconds - int(seconds)) * 1000)
return f"{hours:02}:{minutes:02}:{secs:02},{millis:03}"
def convert_to_srt(transcribed: Dict[str, Any]) -> str:
"""
Convert transcription chunks into SRT format.
"""
srt_output = []
if "chunks" in transcribed:
for i, chunk in enumerate(transcribed["chunks"], start=1):
if chunk.get("timestamp") is not None:
start_time = seconds_to_srt_time(chunk["timestamp"][0])
end_time = seconds_to_srt_time(chunk["timestamp"][1])
srt_output.append(f"{i}\n{start_time} --> {end_time}\n{chunk['text']}\n")
else:
srt_output.append(f"{i}\n{chunk['text']}\n")
return "\n".join(srt_output)
else:
logging.warning("No chunks found; returning plain text.")
return transcribed.get("text", "")
# ------------------------------
# Hugging Face Login Adjustment
# ------------------------------
def hf_login() -> None:
"""
Log in to Hugging Face using the token from environment variables.
"""
huggingface_api_token = os.environ.get('HF_TOKEN')
if not huggingface_api_token:
raise ValueError("HF_TOKEN not set in environment variables.")
login(token=huggingface_api_token)
logging.info("Logged in to Hugging Face successfully.")
# Log in once (this can be done at startup)
hf_login()
# -------------------------------------------
# Generate Video Chapters from the Transcript
# -------------------------------------------
def generate_chapters(srt_text: str) -> str:
"""
Generate video chapters from the SRT transcript using a text generation model.
"""
chapter_model_id = "Qwen/Qwen2.5-Coder-32B-Instruct" # or another model if desired
client = InferenceClient(model=chapter_model_id)
prompt = (
"Based on the following video transcript, generate a numbered list of concise, SEO-friendly video chapters with timestamps. "
"Keep related parts together to limit the number of chapters (up to 5-10 chapters). "
"Each chapter should be in the format '<timestamp> <chapter title>', where the first chapter starts at 0:00. "
"Timestamps should be in the format 'm:ss' as needed. For example:\n\n"
"0:00 Intro\n"
"1:34 Why the GPT wrapper is bad\n"
"2:14 Smart users workflow\n\n"
"Only output the chapters list in the provided format. Stop after one list.\n"
"Transcript:\n"
f"{srt_text}\n\n"
"Chapters:"
)
generation_parameters = {
"max_new_tokens": 300,
"temperature": 0.5,
"top_p": 0.95,
"do_sample": True,
}
try:
generated_text = client.text_generation(prompt, **generation_parameters)
return generated_text
except Exception as e:
logging.error("Error generating chapters: %s", e)
raise
# -------------------------------------------
# Main Processing Function for Gradio UI
# -------------------------------------------
def process_video(video_url: str):
# Download audio from the provided URL.
audio_file = download_audio(video_url)
logging.info("Audio file saved as: %s", audio_file)
# Transcribe the audio.
transcribed_text = transcribe_audio(audio_file, batch_size)
# Clean up memory.
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Convert transcription to SRT format.
srt_text = convert_to_srt(transcribed_text)
# Generate chapters from the SRT.
response = generate_chapters(srt_text)
# Extract only the chapters part and add a footer
cleaned_text = response.split("Chapters:")[1] if "Chapters:" in response else response
chapters = f"{cleaned_text.strip()}\n\nGenerated using free 'GenAI ChapterCraft' tool."
return srt_text, chapters
# -------------------------------------------
# Gradio Interface Definition
# -------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("# Video Chapter Generator")
with gr.Row():
video_url_input = gr.Textbox(label="Video URL", placeholder="Enter video URL here", lines=1)
with gr.Row():
process_button = gr.Button("Process Video")
with gr.Row():
srt_output = gr.Textbox(label="SRT Transcript", interactive=False, lines=15, show_copy_button=True)
with gr.Row():
chapters_output = gr.Textbox(label="Generated Chapters", interactive=False, lines=10, show_copy_button=True)
process_button.click(fn=process_video, inputs=video_url_input, outputs=[srt_output, chapters_output])
# Launch the Gradio app
demo.launch()