# ========== Standard Library ========== import os import tempfile import zipfile from typing import List, Optional, Tuple, Union import collections # ========== Third-Party Libraries ========== import gradio as gr from groq import Groq from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.document_loaders import DirectoryLoader, UnstructuredFileLoader from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import PromptTemplate from langchain_core.runnables import RunnablePassthrough from langchain_core.vectorstores import InMemoryVectorStore from langchain_groq import ChatGroq from langchain_huggingface import HuggingFaceEmbeddings # ========== Configs ========== TITLE = """

šŸ—ØļøšŸ¦™ Llama 4 Docx Chatter

""" AVATAR_IMAGES = ( None, "./logo.png", ) # Acceptable file extensions TEXT_EXTENSIONS = [".docx", ".zip"] # ========== Models & Clients ========== GROQ_API_KEY = os.getenv("GROQ_API_KEY") client = Groq(api_key=GROQ_API_KEY) llm = ChatGroq(model="meta-llama/llama-4-scout-17b-16e-instruct", api_key=GROQ_API_KEY) embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1") # ========== Core Components ========== text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=100, separators=["\n\n", "\n"], ) rag_template = """You are an expert assistant tasked with answering questions based on the provided documents. Use only the given context to generate your answer. If the answer cannot be found in the context, clearly state that you do not know. Be detailed and precise in your response, but avoid mentioning or referencing the context itself. Context: {context} Question: {question} Answer:""" rag_prompt = PromptTemplate.from_template(rag_template) # ========== App State ========== class AppState: vectorstore: Optional[InMemoryVectorStore] = None rag_chain = None state = AppState() # ========== Utility Functions ========== def load_documents_from_files(files: List[str]) -> List: """Load documents from uploaded files directly without moving.""" all_documents = [] # Temporary directory if ZIP needs extraction with tempfile.TemporaryDirectory() as temp_dir: for file_path in files: ext = os.path.splitext(file_path)[1].lower() if ext == ".zip": # Extract ZIP inside temp_dir with zipfile.ZipFile(file_path, "r") as zip_ref: zip_ref.extractall(temp_dir) # Load all docx from extracted zip loader = DirectoryLoader( path=temp_dir, glob="**/*.docx", use_multithreading=True, ) docs = loader.load() all_documents.extend(docs) elif ext == ".docx": # Load single docx directly loader = UnstructuredFileLoader(file_path) docs = loader.load() all_documents.extend(docs) return all_documents def get_last_user_message(chatbot: List[Union[gr.ChatMessage, dict]]) -> Optional[str]: """Get last user prompt.""" for message in reversed(chatbot): content = ( message.get("content") if isinstance(message, dict) else message.content ) if ( message.get("role") if isinstance(message, dict) else message.role ) == "user": return content return None # ========== Main Logic ========== def upload_files( files: Optional[List[str]], chatbot: List[Union[gr.ChatMessage, dict]] ): """Handle file upload - .docx or .zip containing docx.""" if not files: return chatbot file_summaries = [] # <-- Collect formatted file/folder info documents = [] with tempfile.TemporaryDirectory() as temp_dir: for file_path in files: filename = os.path.basename(file_path) ext = os.path.splitext(file_path)[1].lower() if ext == ".zip": file_summaries.append(f"šŸ“¦ **{filename}** (ZIP file) contains:") try: with zipfile.ZipFile(file_path, "r") as zip_ref: zip_ref.extractall(temp_dir) zip_contents = zip_ref.namelist() # Group files by folder folder_map = collections.defaultdict(list) for item in zip_contents: if item.endswith("/"): continue # skip folder entries themselves folder = os.path.dirname(item) file_name = os.path.basename(item) folder_map[folder].append(file_name) # Format nicely for folder, files_in_folder in folder_map.items(): if folder: file_summaries.append(f"šŸ“‚ {folder}/") else: file_summaries.append(f"šŸ“„ (root)") for f in files_in_folder: file_summaries.append(f" - {f}") # Load docx files extracted from ZIP loader = DirectoryLoader( path=temp_dir, glob="**/*.docx", use_multithreading=True, ) docs = loader.load() documents.extend(docs) except zipfile.BadZipFile: chatbot.append( gr.ChatMessage( role="assistant", content=f"āŒ Failed to open ZIP file: {filename}", ) ) elif ext == ".docx": file_summaries.append(f"šŸ“„ **{filename}**") loader = UnstructuredFileLoader(file_path) docs = loader.load() documents.extend(docs) else: file_summaries.append(f"āŒ Unsupported file type: {filename}") if not documents: chatbot.append( gr.ChatMessage( role="assistant", content="No valid .docx files found in upload." ) ) return chatbot # Split documents chunks = text_splitter.split_documents(documents) if not chunks: chatbot.append( gr.ChatMessage( role="assistant", content="Failed to split documents into chunks." ) ) return chatbot # Create Vectorstore state.vectorstore = InMemoryVectorStore.from_documents( documents=chunks, embedding=embed_model, ) retriever = state.vectorstore.as_retriever() # Build RAG Chain state.rag_chain = ( {"context": retriever, "question": RunnablePassthrough()} | rag_prompt | llm | StrOutputParser() ) # Final display chatbot.append( gr.ChatMessage( role="assistant", content="**Uploaded Files:**\n" + "\n".join(file_summaries) + "\n\nāœ… Ready to chat!", ) ) return chatbot def user_message( text_prompt: str, chatbot: List[Union[gr.ChatMessage, dict]] ) -> Tuple[str, List[Union[gr.ChatMessage, dict]]]: """Add user's text input to conversation.""" if text_prompt.strip(): chatbot.append(gr.ChatMessage(role="user", content=text_prompt)) return "", chatbot def process_query( chatbot: List[Union[gr.ChatMessage, dict]], ) -> List[Union[gr.ChatMessage, dict]]: """Process user's query through RAG pipeline.""" prompt = get_last_user_message(chatbot) if not prompt: chatbot.append( gr.ChatMessage(role="assistant", content="Please type a question first.") ) return chatbot if state.rag_chain is None: chatbot.append( gr.ChatMessage(role="assistant", content="Please upload documents first.") ) return chatbot chatbot.append(gr.ChatMessage(role="assistant", content="Thinking...")) try: response = state.rag_chain.invoke(prompt) chatbot[-1].content = response except Exception as e: chatbot[-1].content = f"Error: {str(e)}" return chatbot def reset_app( chatbot: List[Union[gr.ChatMessage, dict]], ) -> List[Union[gr.ChatMessage, dict]]: """Reset application state.""" state.vectorstore = None state.rag_chain = None return [ gr.ChatMessage( role="assistant", content="App reset! Upload new documents to start." ) ] # ========== UI Layout ========== with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.HTML(TITLE) chatbot = gr.Chatbot( label="Llama 4 RAG", type="messages", bubble_full_width=False, avatar_images=AVATAR_IMAGES, scale=2, height=350, ) with gr.Row(equal_height=True): text_prompt = gr.Textbox( placeholder="Ask a question...", show_label=False, autofocus=True, scale=28 ) send_button = gr.Button( value="Send", variant="primary", scale=1, min_width=80, ) upload_button = gr.UploadButton( label="Upload", file_count="multiple", file_types=TEXT_EXTENSIONS, scale=1, min_width=80, ) reset_button = gr.Button( value="Reset", variant="stop", scale=1, min_width=80, ) send_button.click( fn=user_message, inputs=[text_prompt, chatbot], outputs=[text_prompt, chatbot], queue=False, ).then(fn=process_query, inputs=[chatbot], outputs=[chatbot]) text_prompt.submit( fn=user_message, inputs=[text_prompt, chatbot], outputs=[text_prompt, chatbot], queue=False, ).then(fn=process_query, inputs=[chatbot], outputs=[chatbot]) upload_button.upload( fn=upload_files, inputs=[upload_button, chatbot], outputs=[chatbot], queue=False ) reset_button.click(fn=reset_app, inputs=[chatbot], outputs=[chatbot], queue=False) demo.queue().launch()