# ========== Standard Library ==========
import os
import tempfile
import zipfile
from typing import List, Optional, Tuple, Union
import collections
# ========== Third-Party Libraries ==========
import gradio as gr
from groq import Groq
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import DirectoryLoader, UnstructuredFileLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_core.vectorstores import InMemoryVectorStore
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
# ========== Configs ==========
TITLE = """
šØļøš¦ Llama 4 Docx Chatter
"""
AVATAR_IMAGES = (
None,
"./logo.png",
)
# Acceptable file extensions
TEXT_EXTENSIONS = [".docx", ".zip"]
# ========== Models & Clients ==========
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
client = Groq(api_key=GROQ_API_KEY)
llm = ChatGroq(model="meta-llama/llama-4-scout-17b-16e-instruct", api_key=GROQ_API_KEY)
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
# ========== Core Components ==========
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=100,
separators=["\n\n", "\n"],
)
rag_template = """You are an expert assistant tasked with answering questions based on the provided documents.
Use only the given context to generate your answer.
If the answer cannot be found in the context, clearly state that you do not know.
Be detailed and precise in your response, but avoid mentioning or referencing the context itself.
Context:
{context}
Question:
{question}
Answer:"""
rag_prompt = PromptTemplate.from_template(rag_template)
# ========== App State ==========
class AppState:
vectorstore: Optional[InMemoryVectorStore] = None
rag_chain = None
state = AppState()
# ========== Utility Functions ==========
def load_documents_from_files(files: List[str]) -> List:
"""Load documents from uploaded files directly without moving."""
all_documents = []
# Temporary directory if ZIP needs extraction
with tempfile.TemporaryDirectory() as temp_dir:
for file_path in files:
ext = os.path.splitext(file_path)[1].lower()
if ext == ".zip":
# Extract ZIP inside temp_dir
with zipfile.ZipFile(file_path, "r") as zip_ref:
zip_ref.extractall(temp_dir)
# Load all docx from extracted zip
loader = DirectoryLoader(
path=temp_dir,
glob="**/*.docx",
use_multithreading=True,
)
docs = loader.load()
all_documents.extend(docs)
elif ext == ".docx":
# Load single docx directly
loader = UnstructuredFileLoader(file_path)
docs = loader.load()
all_documents.extend(docs)
return all_documents
def get_last_user_message(chatbot: List[Union[gr.ChatMessage, dict]]) -> Optional[str]:
"""Get last user prompt."""
for message in reversed(chatbot):
content = (
message.get("content") if isinstance(message, dict) else message.content
)
if (
message.get("role") if isinstance(message, dict) else message.role
) == "user":
return content
return None
# ========== Main Logic ==========
def upload_files(
files: Optional[List[str]], chatbot: List[Union[gr.ChatMessage, dict]]
):
"""Handle file upload - .docx or .zip containing docx."""
if not files:
return chatbot
file_summaries = [] # <-- Collect formatted file/folder info
documents = []
with tempfile.TemporaryDirectory() as temp_dir:
for file_path in files:
filename = os.path.basename(file_path)
ext = os.path.splitext(file_path)[1].lower()
if ext == ".zip":
file_summaries.append(f"š¦ **{filename}** (ZIP file) contains:")
try:
with zipfile.ZipFile(file_path, "r") as zip_ref:
zip_ref.extractall(temp_dir)
zip_contents = zip_ref.namelist()
# Group files by folder
folder_map = collections.defaultdict(list)
for item in zip_contents:
if item.endswith("/"):
continue # skip folder entries themselves
folder = os.path.dirname(item)
file_name = os.path.basename(item)
folder_map[folder].append(file_name)
# Format nicely
for folder, files_in_folder in folder_map.items():
if folder:
file_summaries.append(f"š {folder}/")
else:
file_summaries.append(f"š (root)")
for f in files_in_folder:
file_summaries.append(f" - {f}")
# Load docx files extracted from ZIP
loader = DirectoryLoader(
path=temp_dir,
glob="**/*.docx",
use_multithreading=True,
)
docs = loader.load()
documents.extend(docs)
except zipfile.BadZipFile:
chatbot.append(
gr.ChatMessage(
role="assistant",
content=f"ā Failed to open ZIP file: {filename}",
)
)
elif ext == ".docx":
file_summaries.append(f"š **{filename}**")
loader = UnstructuredFileLoader(file_path)
docs = loader.load()
documents.extend(docs)
else:
file_summaries.append(f"ā Unsupported file type: {filename}")
if not documents:
chatbot.append(
gr.ChatMessage(
role="assistant", content="No valid .docx files found in upload."
)
)
return chatbot
# Split documents
chunks = text_splitter.split_documents(documents)
if not chunks:
chatbot.append(
gr.ChatMessage(
role="assistant", content="Failed to split documents into chunks."
)
)
return chatbot
# Create Vectorstore
state.vectorstore = InMemoryVectorStore.from_documents(
documents=chunks,
embedding=embed_model,
)
retriever = state.vectorstore.as_retriever()
# Build RAG Chain
state.rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| rag_prompt
| llm
| StrOutputParser()
)
# Final display
chatbot.append(
gr.ChatMessage(
role="assistant",
content="**Uploaded Files:**\n"
+ "\n".join(file_summaries)
+ "\n\nā
Ready to chat!",
)
)
return chatbot
def user_message(
text_prompt: str, chatbot: List[Union[gr.ChatMessage, dict]]
) -> Tuple[str, List[Union[gr.ChatMessage, dict]]]:
"""Add user's text input to conversation."""
if text_prompt.strip():
chatbot.append(gr.ChatMessage(role="user", content=text_prompt))
return "", chatbot
def process_query(
chatbot: List[Union[gr.ChatMessage, dict]],
) -> List[Union[gr.ChatMessage, dict]]:
"""Process user's query through RAG pipeline."""
prompt = get_last_user_message(chatbot)
if not prompt:
chatbot.append(
gr.ChatMessage(role="assistant", content="Please type a question first.")
)
return chatbot
if state.rag_chain is None:
chatbot.append(
gr.ChatMessage(role="assistant", content="Please upload documents first.")
)
return chatbot
chatbot.append(gr.ChatMessage(role="assistant", content="Thinking..."))
try:
response = state.rag_chain.invoke(prompt)
chatbot[-1].content = response
except Exception as e:
chatbot[-1].content = f"Error: {str(e)}"
return chatbot
def reset_app(
chatbot: List[Union[gr.ChatMessage, dict]],
) -> List[Union[gr.ChatMessage, dict]]:
"""Reset application state."""
state.vectorstore = None
state.rag_chain = None
return [
gr.ChatMessage(
role="assistant", content="App reset! Upload new documents to start."
)
]
# ========== UI Layout ==========
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.HTML(TITLE)
chatbot = gr.Chatbot(
label="Llama 4 RAG",
type="messages",
bubble_full_width=False,
avatar_images=AVATAR_IMAGES,
scale=2,
height=350,
)
with gr.Row(equal_height=True):
text_prompt = gr.Textbox(
placeholder="Ask a question...", show_label=False, autofocus=True, scale=28
)
send_button = gr.Button(
value="Send",
variant="primary",
scale=1,
min_width=80,
)
upload_button = gr.UploadButton(
label="Upload",
file_count="multiple",
file_types=TEXT_EXTENSIONS,
scale=1,
min_width=80,
)
reset_button = gr.Button(
value="Reset",
variant="stop",
scale=1,
min_width=80,
)
send_button.click(
fn=user_message,
inputs=[text_prompt, chatbot],
outputs=[text_prompt, chatbot],
queue=False,
).then(fn=process_query, inputs=[chatbot], outputs=[chatbot])
text_prompt.submit(
fn=user_message,
inputs=[text_prompt, chatbot],
outputs=[text_prompt, chatbot],
queue=False,
).then(fn=process_query, inputs=[chatbot], outputs=[chatbot])
upload_button.upload(
fn=upload_files, inputs=[upload_button, chatbot], outputs=[chatbot], queue=False
)
reset_button.click(fn=reset_app, inputs=[chatbot], outputs=[chatbot], queue=False)
demo.queue().launch()