import os import zipfile from typing import Dict, List, Optional, Union import gradio as gr from groq import Groq from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import PromptTemplate from langchain_core.runnables import RunnablePassthrough from langchain_groq import ChatGroq from langchain_huggingface import HuggingFaceEmbeddings from langchain_core.vectorstores import InMemoryVectorStore # Retrieve API key for Groq from the environment variables GROQ_API_KEY = os.environ.get("GROQ_API_KEY") # Initialize the Groq client client = Groq(api_key=GROQ_API_KEY) # Initialize the LLM llm = ChatGroq(model="meta-llama/llama-4-scout-17b-16e-instruct", api_key=GROQ_API_KEY) # Initialize the embedding model embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1") # General constants for the UI TITLE = """

✨ Llama 4 RAG Application

""" AVATAR_IMAGES = ( None, "https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.png", ) # List of supported text extensions (alphabetically sorted) TEXT_EXTENSIONS = [ ".bat", ".c", ".cfg", ".conf", ".cpp", ".cs", ".css", ".docx", ".go", ".h", ".html", ".ini", ".java", ".js", ".json", ".jsx", ".md", ".php", ".ps1", ".py", ".rb", ".rs", ".sh", ".toml", ".ts", ".tsx", ".txt", ".xml", ".yaml", ".yml", ] # Global variables EXTRACTED_FILES = {} VECTORSTORE = None RAG_CHAIN = None # Initialize the text splitter text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=100, separators=["\n\n", "\n"] ) # Define the RAG prompt template template = """You are an expert assistant tasked with answering questions based on the provided documents. Use only the given context to generate your answer. If the answer cannot be found in the context, clearly state that you do not know. Be detailed and precise in your response, but avoid mentioning or referencing the context itself. Context: {context} Question: {question} Answer:""" # Create the PromptTemplate rag_prompt = PromptTemplate.from_template(template) def extract_text_from_zip(zip_file_path: str) -> Dict[str, str]: """ Extract text content from files in a ZIP archive. Parameters: zip_file_path (str): Path to the ZIP file. Returns: Dict[str, str]: Dictionary mapping filenames to their text content. """ text_contents = {} with zipfile.ZipFile(zip_file_path, "r") as zip_ref: for file_info in zip_ref.infolist(): # Skip directories if file_info.filename.endswith("/"): continue # Skip binary files and focus on text files file_ext = os.path.splitext(file_info.filename)[1].lower() if file_ext in TEXT_EXTENSIONS: try: with zip_ref.open(file_info) as file: content = file.read().decode("utf-8", errors="replace") text_contents[file_info.filename] = content except Exception as e: text_contents[file_info.filename] = ( f"Error extracting file: {str(e)}" ) return text_contents def extract_text_from_single_file(file_path: str) -> Dict[str, str]: """ Extract text content from a single file. Parameters: file_path (str): Path to the file. Returns: Dict[str, str]: Dictionary mapping filename to its text content. """ text_contents = {} filename = os.path.basename(file_path) file_ext = os.path.splitext(filename)[1].lower() if file_ext in TEXT_EXTENSIONS: try: with open(file_path, "r", encoding="utf-8", errors="replace") as file: content = file.read() text_contents[filename] = content except Exception as e: text_contents[filename] = f"Error reading file: {str(e)}" return text_contents def upload_files( files: Optional[List[str]], chatbot: List[Union[dict, gr.ChatMessage]] ): """ Process uploaded files (ZIP or single text files): extract text content and append a message to the chat. Parameters: files (Optional[List[str]]): List of file paths. chatbot (List[Union[dict, gr.ChatMessage]]): The conversation history. Returns: List[Union[dict, gr.ChatMessage]]: Updated conversation history. """ global EXTRACTED_FILES, VECTORSTORE, RAG_CHAIN # Handle multiple file uploads if len(files) > 1: total_files_processed = 0 total_files_extracted = 0 file_types = set() # Process each file for file in files: filename = os.path.basename(file) file_ext = os.path.splitext(filename)[1].lower() # Process based on file type if file_ext == ".zip": extracted_files = extract_text_from_zip(file) file_types.add("zip") else: extracted_files = extract_text_from_single_file(file) file_types.add("text") if extracted_files: total_files_extracted += len(extracted_files) # Store the extracted content in the global variable EXTRACTED_FILES[filename] = extracted_files total_files_processed += 1 # Create a summary message for multiple files file_types_str = ( "files" if len(file_types) > 1 else ("ZIP files" if "zip" in file_types else "text files") ) # Create a list of uploaded file names file_list = "\n".join([f"- {os.path.basename(file)}" for file in files]) chatbot.append( gr.ChatMessage( role="user", content=f"

📚 Multiple {file_types_str} uploaded ({total_files_processed} files)

Extracted {total_files_extracted} text file(s) in total

Uploaded files:

{file_list}
", ) ) # Handle single file upload elif len(files) == 1: file = files[0] filename = os.path.basename(file) file_ext = os.path.splitext(filename)[1].lower() # Process based on file type if file_ext == ".zip": extracted_files = extract_text_from_zip(file) file_type_msg = "📦 ZIP file" else: extracted_files = extract_text_from_single_file(file) file_type_msg = "📄 File" if not extracted_files: chatbot.append( gr.ChatMessage( role="user", content=f"

{file_type_msg} uploaded: {filename}, but no text content was found or the file format is not supported.

", ) ) else: file_list = "\n".join([f"- {name}" for name in extracted_files.keys()]) chatbot.append( gr.ChatMessage( role="user", content=f"

{file_type_msg} uploaded: {filename}

Extracted {len(extracted_files)} text file(s):

{file_list}
", ) ) # Store the extracted content in the global variable EXTRACTED_FILES[filename] = extracted_files # Process the extracted files and create vector embeddings if EXTRACTED_FILES: # Prepare documents for processing all_texts = [] for filename, files in EXTRACTED_FILES.items(): for file_path, content in files.items(): all_texts.append( {"page_content": content, "metadata": {"source": file_path}} ) # Create document objects from langchain_core.documents import Document documents = [ Document(page_content=item["page_content"], metadata=item["metadata"]) for item in all_texts ] # Split the documents into chunks chunks = text_splitter.split_documents(documents) # Create the vector store VECTORSTORE = InMemoryVectorStore.from_documents( documents=chunks, embedding=embed_model, ) # Create the retriever retriever = VECTORSTORE.as_retriever() # Create the RAG chain RAG_CHAIN = ( {"context": retriever, "question": RunnablePassthrough()} | rag_prompt | llm | StrOutputParser() ) # Add a confirmation message chatbot.append( gr.ChatMessage( role="assistant", content="Documents processed and indexed. You can now ask questions about the content.", ) ) return chatbot def user(text_prompt: str, chatbot: List[gr.ChatMessage]): """ Append a new user text message to the chat history. Parameters: text_prompt (str): The input text provided by the user. chatbot (List[gr.ChatMessage]): The existing conversation history. Returns: Tuple[str, List[gr.ChatMessage]]: A tuple of an empty string (clearing the prompt) and the updated conversation history. """ if text_prompt: chatbot.append(gr.ChatMessage(role="user", content=text_prompt)) return "", chatbot def get_message_content(msg): """ Retrieve the content of a message that can be either a dictionary or a gr.ChatMessage. Parameters: msg (Union[dict, gr.ChatMessage]): The message object. Returns: str: The textual content of the message. """ if isinstance(msg, dict): return msg.get("content", "") return msg.content def process_query(chatbot: List[Union[dict, gr.ChatMessage]]): """ Process the user's query using the RAG pipeline. Parameters: chatbot (List[Union[dict, gr.ChatMessage]]): The conversation history. Returns: List[Union[dict, gr.ChatMessage]]: The updated conversation history with the response. """ global RAG_CHAIN if len(chatbot) == 0: chatbot.append( gr.ChatMessage( role="assistant", content="Please enter a question or upload documents to start the conversation.", ) ) return chatbot # Get the last user message as the prompt user_messages = [ msg for msg in chatbot if (isinstance(msg, dict) and msg.get("role") == "user") or (hasattr(msg, "role") and msg.role == "user") ] if not user_messages: chatbot.append( gr.ChatMessage( role="assistant", content="Please enter a question to start the conversation.", ) ) return chatbot last_user_msg = user_messages[-1] prompt = get_message_content(last_user_msg) # Skip if the last message was about uploading a file if ( "📦 ZIP file uploaded:" in prompt or "📄 File uploaded:" in prompt or "📚 Multiple files uploaded" in prompt ): return chatbot # Check if RAG chain is available if RAG_CHAIN is None: chatbot.append( gr.ChatMessage( role="assistant", content="Please upload documents first to enable question answering.", ) ) return chatbot # Append a placeholder for the assistant's response chatbot.append(gr.ChatMessage(role="assistant", content="Thinking...")) try: # Process the query through the RAG chain response = RAG_CHAIN.invoke(prompt) # Update the placeholder with the actual response chatbot[-1].content = response except Exception as e: # Handle any errors chatbot[-1].content = f"Error processing your query: {str(e)}" return chatbot def reset_app(chatbot): """ Reset the app by clearing the chat context and removing any uploaded files. Parameters: chatbot (List[Union[dict, gr.ChatMessage]]): The conversation history. Returns: List[Union[dict, gr.ChatMessage]]: A fresh conversation history. """ global EXTRACTED_FILES, VECTORSTORE, RAG_CHAIN # Clear the global variables EXTRACTED_FILES = {} VECTORSTORE = None RAG_CHAIN = None # Reset the chatbot with a welcome message return [ gr.ChatMessage( role="assistant", content="App has been reset. You can start a new conversation or upload new documents.", ) ] # Define the Gradio UI components chatbot_component = gr.Chatbot( label="Llama 4 RAG", type="messages", bubble_full_width=False, avatar_images=AVATAR_IMAGES, scale=2, height=350, ) text_prompt_component = gr.Textbox( placeholder="Ask a question about your documents...", show_label=False, autofocus=True, scale=28, ) upload_files_button_component = gr.UploadButton( label="Upload", file_count="multiple", file_types=[".zip", ".docx"] + TEXT_EXTENSIONS, scale=1, min_width=80, ) send_button_component = gr.Button( value="Send", variant="primary", scale=1, min_width=80 ) reset_button_component = gr.Button(value="Reset", variant="stop", scale=1, min_width=80) # Define input lists for button chaining user_inputs = [text_prompt_component, chatbot_component] with gr.Blocks(theme=gr.themes.Ocean()) as demo: gr.HTML(TITLE) with gr.Column(): chatbot_component.render() with gr.Row(equal_height=True): text_prompt_component.render() send_button_component.render() upload_files_button_component.render() reset_button_component.render() # When the Send button is clicked, first process the user text then process the query send_button_component.click( fn=user, inputs=user_inputs, outputs=[text_prompt_component, chatbot_component], queue=False, ).then( fn=process_query, inputs=[chatbot_component], outputs=[chatbot_component], api_name="process_query", ) # Allow submission using the Enter key text_prompt_component.submit( fn=user, inputs=user_inputs, outputs=[text_prompt_component, chatbot_component], queue=False, ).then( fn=process_query, inputs=[chatbot_component], outputs=[chatbot_component], api_name="process_query_submit", ) # Handle file uploads upload_files_button_component.upload( fn=upload_files, inputs=[upload_files_button_component, chatbot_component], outputs=[chatbot_component], queue=False, ) # Handle Reset button clicks reset_button_component.click( fn=reset_app, inputs=[chatbot_component], outputs=[chatbot_component], queue=False, ) # Launch the demo interface demo.queue().launch()