Spaces:
Running
Running
File size: 15,171 Bytes
355b607 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
import os
import zipfile
from typing import Dict, List, Optional, Union
import gradio as gr
from groq import Groq
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_core.vectorstores import InMemoryVectorStore
# Retrieve API key for Groq from the environment variables
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
# Initialize the Groq client
client = Groq(api_key=GROQ_API_KEY)
# Initialize the LLM
llm = ChatGroq(model="meta-llama/llama-4-scout-17b-16e-instruct", api_key=GROQ_API_KEY)
# Initialize the embedding model
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
# General constants for the UI
TITLE = """<h1 align="center">β¨ Llama 4 RAG Application</h1>"""
AVATAR_IMAGES = (
None,
"https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.png",
)
# List of supported text extensions (alphabetically sorted)
TEXT_EXTENSIONS = [
".bat",
".c",
".cfg",
".conf",
".cpp",
".cs",
".css",
".docx",
".go",
".h",
".html",
".ini",
".java",
".js",
".json",
".jsx",
".md",
".php",
".ps1",
".py",
".rb",
".rs",
".sh",
".toml",
".ts",
".tsx",
".txt",
".xml",
".yaml",
".yml",
]
# Global variables
EXTRACTED_FILES = {}
VECTORSTORE = None
RAG_CHAIN = None
# Initialize the text splitter
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, chunk_overlap=100, separators=["\n\n", "\n"]
)
# Define the RAG prompt template
template = """You are an expert assistant tasked with answering questions based on the provided documents.
Use only the given context to generate your answer.
If the answer cannot be found in the context, clearly state that you do not know.
Be detailed and precise in your response, but avoid mentioning or referencing the context itself.
Context:
{context}
Question:
{question}
Answer:"""
# Create the PromptTemplate
rag_prompt = PromptTemplate.from_template(template)
def extract_text_from_zip(zip_file_path: str) -> Dict[str, str]:
"""
Extract text content from files in a ZIP archive.
Parameters:
zip_file_path (str): Path to the ZIP file.
Returns:
Dict[str, str]: Dictionary mapping filenames to their text content.
"""
text_contents = {}
with zipfile.ZipFile(zip_file_path, "r") as zip_ref:
for file_info in zip_ref.infolist():
# Skip directories
if file_info.filename.endswith("/"):
continue
# Skip binary files and focus on text files
file_ext = os.path.splitext(file_info.filename)[1].lower()
if file_ext in TEXT_EXTENSIONS:
try:
with zip_ref.open(file_info) as file:
content = file.read().decode("utf-8", errors="replace")
text_contents[file_info.filename] = content
except Exception as e:
text_contents[file_info.filename] = (
f"Error extracting file: {str(e)}"
)
return text_contents
def extract_text_from_single_file(file_path: str) -> Dict[str, str]:
"""
Extract text content from a single file.
Parameters:
file_path (str): Path to the file.
Returns:
Dict[str, str]: Dictionary mapping filename to its text content.
"""
text_contents = {}
filename = os.path.basename(file_path)
file_ext = os.path.splitext(filename)[1].lower()
if file_ext in TEXT_EXTENSIONS:
try:
with open(file_path, "r", encoding="utf-8", errors="replace") as file:
content = file.read()
text_contents[filename] = content
except Exception as e:
text_contents[filename] = f"Error reading file: {str(e)}"
return text_contents
def upload_files(
files: Optional[List[str]], chatbot: List[Union[dict, gr.ChatMessage]]
):
"""
Process uploaded files (ZIP or single text files): extract text content and append a message to the chat.
Parameters:
files (Optional[List[str]]): List of file paths.
chatbot (List[Union[dict, gr.ChatMessage]]): The conversation history.
Returns:
List[Union[dict, gr.ChatMessage]]: Updated conversation history.
"""
global EXTRACTED_FILES, VECTORSTORE, RAG_CHAIN
# Handle multiple file uploads
if len(files) > 1:
total_files_processed = 0
total_files_extracted = 0
file_types = set()
# Process each file
for file in files:
filename = os.path.basename(file)
file_ext = os.path.splitext(filename)[1].lower()
# Process based on file type
if file_ext == ".zip":
extracted_files = extract_text_from_zip(file)
file_types.add("zip")
else:
extracted_files = extract_text_from_single_file(file)
file_types.add("text")
if extracted_files:
total_files_extracted += len(extracted_files)
# Store the extracted content in the global variable
EXTRACTED_FILES[filename] = extracted_files
total_files_processed += 1
# Create a summary message for multiple files
file_types_str = (
"files"
if len(file_types) > 1
else ("ZIP files" if "zip" in file_types else "text files")
)
# Create a list of uploaded file names
file_list = "\n".join([f"- {os.path.basename(file)}" for file in files])
chatbot.append(
gr.ChatMessage(
role="user",
content=f"<p>π Multiple {file_types_str} uploaded ({total_files_processed} files)</p><p>Extracted {total_files_extracted} text file(s) in total</p><p>Uploaded files:</p><pre>{file_list}</pre>",
)
)
# Handle single file upload
elif len(files) == 1:
file = files[0]
filename = os.path.basename(file)
file_ext = os.path.splitext(filename)[1].lower()
# Process based on file type
if file_ext == ".zip":
extracted_files = extract_text_from_zip(file)
file_type_msg = "π¦ ZIP file"
else:
extracted_files = extract_text_from_single_file(file)
file_type_msg = "π File"
if not extracted_files:
chatbot.append(
gr.ChatMessage(
role="user",
content=f"<p>{file_type_msg} uploaded: {filename}, but no text content was found or the file format is not supported.</p>",
)
)
else:
file_list = "\n".join([f"- {name}" for name in extracted_files.keys()])
chatbot.append(
gr.ChatMessage(
role="user",
content=f"<p>{file_type_msg} uploaded: {filename}</p><p>Extracted {len(extracted_files)} text file(s):</p><pre>{file_list}</pre>",
)
)
# Store the extracted content in the global variable
EXTRACTED_FILES[filename] = extracted_files
# Process the extracted files and create vector embeddings
if EXTRACTED_FILES:
# Prepare documents for processing
all_texts = []
for filename, files in EXTRACTED_FILES.items():
for file_path, content in files.items():
all_texts.append(
{"page_content": content, "metadata": {"source": file_path}}
)
# Create document objects
from langchain_core.documents import Document
documents = [
Document(page_content=item["page_content"], metadata=item["metadata"])
for item in all_texts
]
# Split the documents into chunks
chunks = text_splitter.split_documents(documents)
# Create the vector store
VECTORSTORE = InMemoryVectorStore.from_documents(
documents=chunks,
embedding=embed_model,
)
# Create the retriever
retriever = VECTORSTORE.as_retriever()
# Create the RAG chain
RAG_CHAIN = (
{"context": retriever, "question": RunnablePassthrough()}
| rag_prompt
| llm
| StrOutputParser()
)
# Add a confirmation message
chatbot.append(
gr.ChatMessage(
role="assistant",
content="Documents processed and indexed. You can now ask questions about the content.",
)
)
return chatbot
def user(text_prompt: str, chatbot: List[gr.ChatMessage]):
"""
Append a new user text message to the chat history.
Parameters:
text_prompt (str): The input text provided by the user.
chatbot (List[gr.ChatMessage]): The existing conversation history.
Returns:
Tuple[str, List[gr.ChatMessage]]: A tuple of an empty string (clearing the prompt)
and the updated conversation history.
"""
if text_prompt:
chatbot.append(gr.ChatMessage(role="user", content=text_prompt))
return "", chatbot
def get_message_content(msg):
"""
Retrieve the content of a message that can be either a dictionary or a gr.ChatMessage.
Parameters:
msg (Union[dict, gr.ChatMessage]): The message object.
Returns:
str: The textual content of the message.
"""
if isinstance(msg, dict):
return msg.get("content", "")
return msg.content
def process_query(chatbot: List[Union[dict, gr.ChatMessage]]):
"""
Process the user's query using the RAG pipeline.
Parameters:
chatbot (List[Union[dict, gr.ChatMessage]]): The conversation history.
Returns:
List[Union[dict, gr.ChatMessage]]: The updated conversation history with the response.
"""
global RAG_CHAIN
if len(chatbot) == 0:
chatbot.append(
gr.ChatMessage(
role="assistant",
content="Please enter a question or upload documents to start the conversation.",
)
)
return chatbot
# Get the last user message as the prompt
user_messages = [
msg
for msg in chatbot
if (isinstance(msg, dict) and msg.get("role") == "user")
or (hasattr(msg, "role") and msg.role == "user")
]
if not user_messages:
chatbot.append(
gr.ChatMessage(
role="assistant",
content="Please enter a question to start the conversation.",
)
)
return chatbot
last_user_msg = user_messages[-1]
prompt = get_message_content(last_user_msg)
# Skip if the last message was about uploading a file
if (
"π¦ ZIP file uploaded:" in prompt
or "π File uploaded:" in prompt
or "π Multiple files uploaded" in prompt
):
return chatbot
# Check if RAG chain is available
if RAG_CHAIN is None:
chatbot.append(
gr.ChatMessage(
role="assistant",
content="Please upload documents first to enable question answering.",
)
)
return chatbot
# Append a placeholder for the assistant's response
chatbot.append(gr.ChatMessage(role="assistant", content="Thinking..."))
try:
# Process the query through the RAG chain
response = RAG_CHAIN.invoke(prompt)
# Update the placeholder with the actual response
chatbot[-1].content = response
except Exception as e:
# Handle any errors
chatbot[-1].content = f"Error processing your query: {str(e)}"
return chatbot
def reset_app(chatbot):
"""
Reset the app by clearing the chat context and removing any uploaded files.
Parameters:
chatbot (List[Union[dict, gr.ChatMessage]]): The conversation history.
Returns:
List[Union[dict, gr.ChatMessage]]: A fresh conversation history.
"""
global EXTRACTED_FILES, VECTORSTORE, RAG_CHAIN
# Clear the global variables
EXTRACTED_FILES = {}
VECTORSTORE = None
RAG_CHAIN = None
# Reset the chatbot with a welcome message
return [
gr.ChatMessage(
role="assistant",
content="App has been reset. You can start a new conversation or upload new documents.",
)
]
# Define the Gradio UI components
chatbot_component = gr.Chatbot(
label="Llama 4 RAG",
type="messages",
bubble_full_width=False,
avatar_images=AVATAR_IMAGES,
scale=2,
height=350,
)
text_prompt_component = gr.Textbox(
placeholder="Ask a question about your documents...",
show_label=False,
autofocus=True,
scale=28,
)
upload_files_button_component = gr.UploadButton(
label="Upload",
file_count="multiple",
file_types=[".zip", ".docx"] + TEXT_EXTENSIONS,
scale=1,
min_width=80,
)
send_button_component = gr.Button(
value="Send", variant="primary", scale=1, min_width=80
)
reset_button_component = gr.Button(value="Reset", variant="stop", scale=1, min_width=80)
# Define input lists for button chaining
user_inputs = [text_prompt_component, chatbot_component]
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
gr.HTML(TITLE)
with gr.Column():
chatbot_component.render()
with gr.Row(equal_height=True):
text_prompt_component.render()
send_button_component.render()
upload_files_button_component.render()
reset_button_component.render()
# When the Send button is clicked, first process the user text then process the query
send_button_component.click(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False,
).then(
fn=process_query,
inputs=[chatbot_component],
outputs=[chatbot_component],
api_name="process_query",
)
# Allow submission using the Enter key
text_prompt_component.submit(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False,
).then(
fn=process_query,
inputs=[chatbot_component],
outputs=[chatbot_component],
api_name="process_query_submit",
)
# Handle file uploads
upload_files_button_component.upload(
fn=upload_files,
inputs=[upload_files_button_component, chatbot_component],
outputs=[chatbot_component],
queue=False,
)
# Handle Reset button clicks
reset_button_component.click(
fn=reset_app,
inputs=[chatbot_component],
outputs=[chatbot_component],
queue=False,
)
# Launch the demo interface
demo.queue().launch()
|