Spaces:
Running
Running
Abid Ali Awan
commited on
Commit
Β·
22b0228
1
Parent(s):
f15d60c
deploying the app
Browse files- README.md +7 -3
- app.py +526 -0
- requirements.txt +1 -0
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
title: Gemini 2 Pro Chat
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.15.0
|
@@ -11,4 +11,8 @@ license: mit
|
|
11 |
short_description: 'Image, Audio, and Document understanding + Code Execution. '
|
12 |
---
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
title: Gemini 2 Pro Chat
|
3 |
+
emoji: βπ¬
|
4 |
+
colorFrom: Green
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.15.0
|
|
|
11 |
short_description: 'Image, Audio, and Document understanding + Code Execution. '
|
12 |
---
|
13 |
|
14 |
+
## Gemini 2.0 Pro Multi-modal Chatbot
|
15 |
+
This module sets up a Gradio interface for a multi-modal chatbot powered by the Gemini 2.0 Pro model.
|
16 |
+
It supports text, image, audio, and document inputs and uses the google.genai library to generate responses.
|
17 |
+
All response-generation operations now use the streaming endpoint (generate_content_stream) so that the UI
|
18 |
+
receives incremental updates.
|
app.py
ADDED
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import io
|
3 |
+
import os
|
4 |
+
import time
|
5 |
+
from typing import Dict, List, Optional, Union
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
from google import genai
|
9 |
+
from google.genai import types # New types module from google-genai
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
# Retrieve API key for Google GenAI from the environment variables.
|
13 |
+
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
|
14 |
+
|
15 |
+
# Initialize the client so that it can be reused across functions.
|
16 |
+
CLIENT = genai.Client(api_key=GOOGLE_API_KEY)
|
17 |
+
|
18 |
+
# General constants for the UI
|
19 |
+
TITLE = """<h1 align="center">Gemini 2.0 Pro Multi-modal Chatbot</h1>"""
|
20 |
+
AVATAR_IMAGES = (None, "https://media.roboflow.com/spaces/gemini-icon.png")
|
21 |
+
IMAGE_WIDTH = 512
|
22 |
+
|
23 |
+
|
24 |
+
def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
|
25 |
+
"""
|
26 |
+
Convert a comma-separated string of stop sequences into a list.
|
27 |
+
|
28 |
+
Parameters:
|
29 |
+
stop_sequences (str): A string containing stop sequences separated by commas.
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
Optional[List[str]]: A list of trimmed stop sequences if provided; otherwise, None.
|
33 |
+
"""
|
34 |
+
if not stop_sequences:
|
35 |
+
return None
|
36 |
+
return [sequence.strip() for sequence in stop_sequences.split(",")]
|
37 |
+
|
38 |
+
|
39 |
+
def preprocess_image(image: Image.Image) -> Image.Image:
|
40 |
+
"""
|
41 |
+
Resize an image to a fixed width while maintaining the aspect ratio.
|
42 |
+
|
43 |
+
Parameters:
|
44 |
+
image (Image.Image): The original image.
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
Image.Image: The resized image with width fixed at IMAGE_WIDTH.
|
48 |
+
"""
|
49 |
+
image_height = int(image.height * IMAGE_WIDTH / image.width)
|
50 |
+
return image.resize((IMAGE_WIDTH, image_height))
|
51 |
+
|
52 |
+
|
53 |
+
def image_to_base64_html_from_pil(image: Image.Image, max_width: int = 150) -> str:
|
54 |
+
"""
|
55 |
+
Convert a PIL Image to an HTML <img> tag with base64-encoded image data.
|
56 |
+
|
57 |
+
Parameters:
|
58 |
+
image (Image.Image): The image to encode.
|
59 |
+
max_width (int): Maximum width (in pixels) for the displayed image.
|
60 |
+
|
61 |
+
Returns:
|
62 |
+
str: An HTML string with the embedded image.
|
63 |
+
"""
|
64 |
+
buffered = io.BytesIO()
|
65 |
+
image.save(buffered, format="JPEG")
|
66 |
+
b64_data = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
67 |
+
return (
|
68 |
+
f'<img src="data:image/jpeg;base64,{b64_data}" alt="Uploaded Image" '
|
69 |
+
f'style="max-width:{max_width}px;">'
|
70 |
+
)
|
71 |
+
|
72 |
+
|
73 |
+
def preprocess_chat_history_messages(
|
74 |
+
chat_history: List[Union[dict, gr.ChatMessage]],
|
75 |
+
) -> List[Dict[str, Union[str, List[str]]]]:
|
76 |
+
"""
|
77 |
+
Normalize chat history messages into a consistent list of dictionaries.
|
78 |
+
|
79 |
+
Each message (whether as a dict or gr.ChatMessage) is converted into a dictionary
|
80 |
+
containing a role and a list of parts (message content).
|
81 |
+
|
82 |
+
Parameters:
|
83 |
+
chat_history (List[Union[dict, gr.ChatMessage]]): The conversation history.
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
List[Dict[str, Union[str, List[str]]]]: A normalized list of messages.
|
87 |
+
"""
|
88 |
+
messages = []
|
89 |
+
for msg in chat_history:
|
90 |
+
if isinstance(msg, dict):
|
91 |
+
content = msg.get("content")
|
92 |
+
role = msg.get("role")
|
93 |
+
else:
|
94 |
+
content = msg.content
|
95 |
+
role = msg.role
|
96 |
+
|
97 |
+
if content is not None:
|
98 |
+
# Convert "assistant" role to "model" if needed.
|
99 |
+
role = "model" if role == "assistant" else role
|
100 |
+
messages.append({"role": role, "parts": [content]})
|
101 |
+
return messages
|
102 |
+
|
103 |
+
|
104 |
+
def chat_history_to_prompt(chat_history: List[Union[dict, gr.ChatMessage]]) -> str:
|
105 |
+
"""
|
106 |
+
Convert the entire chat conversation into a single text prompt.
|
107 |
+
|
108 |
+
Each message is prefixed by βUser:β or βAssistant:β to form a full conversation.
|
109 |
+
|
110 |
+
Parameters:
|
111 |
+
chat_history (List[Union[dict, gr.ChatMessage]]): The conversation history.
|
112 |
+
|
113 |
+
Returns:
|
114 |
+
str: A string that concatenates the conversation history.
|
115 |
+
"""
|
116 |
+
conversation = ""
|
117 |
+
for msg in chat_history:
|
118 |
+
content = get_message_content(msg)
|
119 |
+
role = msg.get("role") if isinstance(msg, dict) else msg.role
|
120 |
+
if role in ["assistant", "model"]:
|
121 |
+
conversation += f"Assistant: {content}\n"
|
122 |
+
else:
|
123 |
+
conversation += f"User: {content}\n"
|
124 |
+
return conversation
|
125 |
+
|
126 |
+
|
127 |
+
def upload(files: Optional[List[str]], chatbot: List[Union[dict, gr.ChatMessage]]):
|
128 |
+
"""
|
129 |
+
Process uploaded image files: resize them, convert to an HTML <img> tag (with base64 data),
|
130 |
+
and append it as a new user message to the chatbot history.
|
131 |
+
|
132 |
+
Parameters:
|
133 |
+
files (Optional[List[str]]): List of image file paths.
|
134 |
+
chatbot (List[Union[dict, gr.ChatMessage]]): The current conversation history.
|
135 |
+
|
136 |
+
Returns:
|
137 |
+
List[Union[dict, gr.ChatMessage]]: Updated conversation history.
|
138 |
+
"""
|
139 |
+
for file in files:
|
140 |
+
image = Image.open(file).convert("RGB")
|
141 |
+
image = preprocess_image(image)
|
142 |
+
image_html = image_to_base64_html_from_pil(image)
|
143 |
+
chatbot.append(gr.ChatMessage(role="user", content=image_html))
|
144 |
+
return chatbot
|
145 |
+
|
146 |
+
|
147 |
+
def upload_audio(
|
148 |
+
files: Optional[List[str]], chatbot: List[Union[dict, gr.ChatMessage]]
|
149 |
+
):
|
150 |
+
"""
|
151 |
+
Process uploaded audio files: read and base64-encode them, wrap the data in an HTML audio player,
|
152 |
+
and append it as a new user message.
|
153 |
+
|
154 |
+
Parameters:
|
155 |
+
files (Optional[List[str]]): List of audio file paths.
|
156 |
+
chatbot (List[Union[dict, gr.ChatMessage]]): The conversation history.
|
157 |
+
|
158 |
+
Returns:
|
159 |
+
List[Union[dict, gr.ChatMessage]]: The updated chatbot history.
|
160 |
+
"""
|
161 |
+
for file in files:
|
162 |
+
with open(file, "rb") as f:
|
163 |
+
audio_bytes = f.read()
|
164 |
+
b64_data = base64.b64encode(audio_bytes).decode("utf-8")
|
165 |
+
audio_html = f"""<audio controls style="max-width:150px;">
|
166 |
+
<source src="data:audio/mp3;base64,{b64_data}" type="audio/mp3">
|
167 |
+
Your browser does not support the audio element.
|
168 |
+
</audio>"""
|
169 |
+
chatbot.append(gr.ChatMessage(role="user", content=audio_html))
|
170 |
+
return chatbot
|
171 |
+
|
172 |
+
|
173 |
+
def upload_document(
|
174 |
+
files: Optional[List[str]], chatbot: List[Union[dict, gr.ChatMessage]]
|
175 |
+
):
|
176 |
+
"""
|
177 |
+
Process uploaded document files (assumed to be PDFs) and add a notification message
|
178 |
+
(with an HTML snippet) indicating that the document has been uploaded.
|
179 |
+
|
180 |
+
Parameters:
|
181 |
+
files (Optional[List[str]]): List of document file paths.
|
182 |
+
chatbot (List[Union[dict, gr.ChatMessage]]): The conversation history.
|
183 |
+
|
184 |
+
Returns:
|
185 |
+
List[Union[dict, gr.ChatMessage]]: The updated chatbot history.
|
186 |
+
"""
|
187 |
+
for file in files:
|
188 |
+
filename = os.path.basename(file)
|
189 |
+
doc_html = f"<p>π Document uploaded: {filename}</p>"
|
190 |
+
chatbot.append(gr.ChatMessage(role="user", content=doc_html))
|
191 |
+
return chatbot
|
192 |
+
|
193 |
+
|
194 |
+
def user(text_prompt: str, chatbot: List[gr.ChatMessage]):
|
195 |
+
"""
|
196 |
+
Append a new user text message to the chat history.
|
197 |
+
|
198 |
+
Parameters:
|
199 |
+
text_prompt (str): The input text provided by the user.
|
200 |
+
chatbot (List[gr.ChatMessage]): The existing conversation history.
|
201 |
+
|
202 |
+
Returns:
|
203 |
+
Tuple[str, List[gr.ChatMessage]]: A tuple of an empty string (clearing the prompt)
|
204 |
+
and the updated conversation history.
|
205 |
+
"""
|
206 |
+
if text_prompt:
|
207 |
+
chatbot.append(gr.ChatMessage(role="user", content=text_prompt))
|
208 |
+
return "", chatbot
|
209 |
+
|
210 |
+
|
211 |
+
def get_message_content(msg):
|
212 |
+
"""
|
213 |
+
Retrieve the content of a message that can be either a dictionary or a gr.ChatMessage.
|
214 |
+
|
215 |
+
Parameters:
|
216 |
+
msg (Union[dict, gr.ChatMessage]): The message object.
|
217 |
+
|
218 |
+
Returns:
|
219 |
+
str: The textual content of the message.
|
220 |
+
"""
|
221 |
+
if isinstance(msg, dict):
|
222 |
+
return msg.get("content", "")
|
223 |
+
return msg.content
|
224 |
+
|
225 |
+
|
226 |
+
def bot(
|
227 |
+
image_files: Optional[List[str]],
|
228 |
+
audio_files: Optional[List[str]],
|
229 |
+
doc_files: Optional[List[str]],
|
230 |
+
chatbot: List[Union[dict, gr.ChatMessage]],
|
231 |
+
):
|
232 |
+
"""
|
233 |
+
Generate a chatbot response from Gemini 2.0 based on provided inputs.
|
234 |
+
This function supports three branches:
|
235 |
+
1. Document branch: when doc_files are provided.
|
236 |
+
2. Multi-modal branch: when image and/or audio files are provided.
|
237 |
+
3. Text-only conversation branch.
|
238 |
+
All branches now use generate_content_stream to yield incremental responses.
|
239 |
+
|
240 |
+
Parameters:
|
241 |
+
image_files (Optional[List[str]]): List of image file paths.
|
242 |
+
audio_files (Optional[List[str]]): List of audio file paths.
|
243 |
+
doc_files (Optional[List[str]]): List of document file paths.
|
244 |
+
chatbot (List[Union[dict, gr.ChatMessage]]): The conversation history.
|
245 |
+
|
246 |
+
Yields:
|
247 |
+
List[Union[dict, gr.ChatMessage]]: The updated conversation history with streamed responses.
|
248 |
+
"""
|
249 |
+
if len(chatbot) == 0:
|
250 |
+
return chatbot
|
251 |
+
|
252 |
+
# Append a placeholder for the assistant's response.
|
253 |
+
chatbot.append(gr.ChatMessage(role="assistant", content=""))
|
254 |
+
|
255 |
+
generation_config = types.GenerateContentConfig(
|
256 |
+
temperature=0.4,
|
257 |
+
max_output_tokens=4096,
|
258 |
+
top_k=32,
|
259 |
+
top_p=1,
|
260 |
+
)
|
261 |
+
|
262 |
+
# Branch 1: Document uploads.
|
263 |
+
if doc_files and len(doc_files) > 0:
|
264 |
+
prev_msg_content = get_message_content(chatbot[-2]) if len(chatbot) >= 2 else ""
|
265 |
+
prompt = [prev_msg_content] if prev_msg_content else []
|
266 |
+
doc_parts = []
|
267 |
+
for file in doc_files:
|
268 |
+
with open(file, "rb") as f:
|
269 |
+
doc_bytes = f.read()
|
270 |
+
doc_parts.append(
|
271 |
+
types.Part.from_bytes(
|
272 |
+
data=doc_bytes,
|
273 |
+
mime_type="application/pdf",
|
274 |
+
)
|
275 |
+
)
|
276 |
+
# Combine document parts and previous text.
|
277 |
+
contents = doc_parts + prompt
|
278 |
+
# Use the streaming endpoint.
|
279 |
+
response = CLIENT.models.generate_content_stream(
|
280 |
+
model="gemini-2.0-pro-exp-02-05",
|
281 |
+
contents=contents,
|
282 |
+
config=generation_config,
|
283 |
+
)
|
284 |
+
for chunk in response:
|
285 |
+
for i in range(0, len(chunk.text), 10):
|
286 |
+
section = chunk.text[i : i + 10]
|
287 |
+
if isinstance(chatbot[-1], dict):
|
288 |
+
chatbot[-1]["content"] += section
|
289 |
+
else:
|
290 |
+
chatbot[-1].content += section
|
291 |
+
time.sleep(0.01)
|
292 |
+
yield chatbot
|
293 |
+
return
|
294 |
+
|
295 |
+
# Branch 2: Image or audio uploads.
|
296 |
+
elif (image_files and len(image_files) > 0) or (
|
297 |
+
audio_files and len(audio_files) > 0
|
298 |
+
):
|
299 |
+
prev_msg_content = get_message_content(chatbot[-2]) if len(chatbot) >= 2 else ""
|
300 |
+
text_prompt = [prev_msg_content] if prev_msg_content else []
|
301 |
+
image_prompt = (
|
302 |
+
[Image.open(file).convert("RGB") for file in image_files]
|
303 |
+
if image_files
|
304 |
+
else []
|
305 |
+
)
|
306 |
+
audio_prompt = []
|
307 |
+
if audio_files:
|
308 |
+
for file in audio_files:
|
309 |
+
with open(file, "rb") as f:
|
310 |
+
audio_bytes = f.read()
|
311 |
+
audio_prompt.append(
|
312 |
+
types.Part.from_bytes(
|
313 |
+
data=audio_bytes,
|
314 |
+
mime_type="audio/mp3",
|
315 |
+
)
|
316 |
+
)
|
317 |
+
# Combine all inputs into a multi-modal prompt.
|
318 |
+
contents = text_prompt + image_prompt + audio_prompt
|
319 |
+
response = CLIENT.models.generate_content_stream(
|
320 |
+
model="gemini-2.0-pro-exp-02-05",
|
321 |
+
contents=contents,
|
322 |
+
config=generation_config,
|
323 |
+
)
|
324 |
+
for chunk in response:
|
325 |
+
for i in range(0, len(chunk.text), 10):
|
326 |
+
section = chunk.text[i : i + 10]
|
327 |
+
if isinstance(chatbot[-1], dict):
|
328 |
+
chatbot[-1]["content"] += section
|
329 |
+
else:
|
330 |
+
chatbot[-1].content += section
|
331 |
+
time.sleep(0.01)
|
332 |
+
yield chatbot
|
333 |
+
return
|
334 |
+
|
335 |
+
# Branch 3: Text-only conversation.
|
336 |
+
else:
|
337 |
+
conversation_text = chat_history_to_prompt(chatbot)
|
338 |
+
response = CLIENT.models.generate_content_stream(
|
339 |
+
model="gemini-2.0-pro-exp-02-05",
|
340 |
+
contents=[conversation_text],
|
341 |
+
config=generation_config,
|
342 |
+
)
|
343 |
+
for chunk in response:
|
344 |
+
for i in range(0, len(chunk.text), 10):
|
345 |
+
section = chunk.text[i : i + 10]
|
346 |
+
if isinstance(chatbot[-1], dict):
|
347 |
+
chatbot[-1]["content"] += section
|
348 |
+
else:
|
349 |
+
chatbot[-1].content += section
|
350 |
+
time.sleep(0.01)
|
351 |
+
yield chatbot
|
352 |
+
return
|
353 |
+
|
354 |
+
|
355 |
+
def run_code_execution(code_prompt: str, chatbot: List[Union[dict, gr.ChatMessage]]):
|
356 |
+
"""
|
357 |
+
Append the user's code execution query to the chat history, then call Gemini
|
358 |
+
with code execution enabled using the user's input. The results (including any
|
359 |
+
generated code and execution output) are appended as a new assistant message.
|
360 |
+
"""
|
361 |
+
# Only add a user message if there is content.
|
362 |
+
if code_prompt.strip():
|
363 |
+
chatbot.append(gr.ChatMessage(role="user", content=code_prompt))
|
364 |
+
# Append an empty assistant message to update with the code execution response.
|
365 |
+
chatbot.append(gr.ChatMessage(role="assistant", content=""))
|
366 |
+
|
367 |
+
generation_config = types.GenerateContentConfig(
|
368 |
+
tools=[types.Tool(code_execution=types.ToolCodeExecution)]
|
369 |
+
)
|
370 |
+
response = CLIENT.models.generate_content(
|
371 |
+
model="gemini-2.0-pro-exp-02-05",
|
372 |
+
contents=code_prompt,
|
373 |
+
config=generation_config,
|
374 |
+
)
|
375 |
+
|
376 |
+
output_text = ""
|
377 |
+
for part in response.candidates[0].content.parts:
|
378 |
+
if part.text is not None:
|
379 |
+
output_text += f"{part.text}\n"
|
380 |
+
if part.executable_code is not None:
|
381 |
+
# Display the executable code in a code block (using markdown formatting)
|
382 |
+
output_text += (
|
383 |
+
f"\n**Generated Code:**\n```python\n{part.executable_code.code}\n```\n"
|
384 |
+
)
|
385 |
+
if part.code_execution_result is not None:
|
386 |
+
output_text += (
|
387 |
+
f"\n**Output:**\n```\n{part.code_execution_result.output}\n```\n"
|
388 |
+
)
|
389 |
+
if part.inline_data is not None:
|
390 |
+
image_data = base64.b64decode(part.inline_data.data)
|
391 |
+
image = Image.open(io.BytesIO(image_data))
|
392 |
+
buffered = io.BytesIO()
|
393 |
+
image.save(buffered, format="PNG")
|
394 |
+
b64_data = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
395 |
+
output_text += f'\n<img src="data:image/png;base64,{b64_data}" alt="Inline Image" style="max-width:300px;"/>\n'
|
396 |
+
output_text += "\n---\n"
|
397 |
+
|
398 |
+
# Update the last assistant message with the code execution result.
|
399 |
+
if isinstance(chatbot[-1], dict):
|
400 |
+
chatbot[-1]["content"] = output_text
|
401 |
+
else:
|
402 |
+
chatbot[-1].content = output_text
|
403 |
+
|
404 |
+
# Clear the text prompt after processing.
|
405 |
+
return "", chatbot
|
406 |
+
|
407 |
+
|
408 |
+
# Define the Gradio UI components.
|
409 |
+
chatbot_component = gr.Chatbot(
|
410 |
+
label="Gemini 2.0 Pro",
|
411 |
+
type="messages", # Using message objects.
|
412 |
+
bubble_full_width=False,
|
413 |
+
avatar_images=AVATAR_IMAGES,
|
414 |
+
scale=2,
|
415 |
+
height=400,
|
416 |
+
)
|
417 |
+
text_prompt_component = gr.Textbox(
|
418 |
+
placeholder="Enter your message or code query here...",
|
419 |
+
show_label=False,
|
420 |
+
autofocus=True,
|
421 |
+
scale=19,
|
422 |
+
)
|
423 |
+
upload_button_component = gr.UploadButton(
|
424 |
+
label="Upload Images",
|
425 |
+
file_count="multiple",
|
426 |
+
file_types=["image"],
|
427 |
+
scale=1,
|
428 |
+
)
|
429 |
+
upload_audio_button_component = gr.UploadButton(
|
430 |
+
label="Upload Audio",
|
431 |
+
file_count="multiple",
|
432 |
+
file_types=["audio"],
|
433 |
+
scale=1,
|
434 |
+
)
|
435 |
+
upload_doc_button_component = gr.UploadButton(
|
436 |
+
label="Upload Documents",
|
437 |
+
file_count="multiple",
|
438 |
+
file_types=[".pdf"],
|
439 |
+
scale=1,
|
440 |
+
)
|
441 |
+
run_button_component = gr.Button(value="Run", variant="primary", scale=1, min_width=60)
|
442 |
+
run_code_execution_button = gr.Button(
|
443 |
+
value="Run Code Execution", variant="secondary", scale=1
|
444 |
+
)
|
445 |
+
|
446 |
+
# Define input lists for button chaining.
|
447 |
+
user_inputs = [text_prompt_component, chatbot_component]
|
448 |
+
bot_inputs = [
|
449 |
+
upload_button_component,
|
450 |
+
upload_audio_button_component,
|
451 |
+
upload_doc_button_component,
|
452 |
+
chatbot_component,
|
453 |
+
]
|
454 |
+
|
455 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
456 |
+
gr.HTML(TITLE)
|
457 |
+
with gr.Column():
|
458 |
+
chatbot_component.render()
|
459 |
+
with gr.Row(equal_height=True):
|
460 |
+
text_prompt_component.render()
|
461 |
+
run_button_component.render()
|
462 |
+
with gr.Row():
|
463 |
+
# Render file-upload buttons and the code execution button in a single row.
|
464 |
+
upload_button_component.render()
|
465 |
+
upload_audio_button_component.render()
|
466 |
+
upload_doc_button_component.render()
|
467 |
+
run_code_execution_button.render()
|
468 |
+
|
469 |
+
# When the Run button is clicked, first process the user text then stream a response.
|
470 |
+
run_button_component.click(
|
471 |
+
fn=user,
|
472 |
+
inputs=user_inputs,
|
473 |
+
outputs=[text_prompt_component, chatbot_component],
|
474 |
+
queue=False,
|
475 |
+
).then(
|
476 |
+
fn=bot,
|
477 |
+
inputs=bot_inputs,
|
478 |
+
outputs=[chatbot_component],
|
479 |
+
)
|
480 |
+
|
481 |
+
# Allow submission using the Enter key.
|
482 |
+
text_prompt_component.submit(
|
483 |
+
fn=user,
|
484 |
+
inputs=user_inputs,
|
485 |
+
outputs=[text_prompt_component, chatbot_component],
|
486 |
+
queue=False,
|
487 |
+
).then(
|
488 |
+
fn=bot,
|
489 |
+
inputs=bot_inputs,
|
490 |
+
outputs=[chatbot_component],
|
491 |
+
)
|
492 |
+
|
493 |
+
# Handle image uploads.
|
494 |
+
upload_button_component.upload(
|
495 |
+
fn=upload,
|
496 |
+
inputs=[upload_button_component, chatbot_component],
|
497 |
+
outputs=[chatbot_component],
|
498 |
+
queue=False,
|
499 |
+
)
|
500 |
+
|
501 |
+
# Handle audio uploads.
|
502 |
+
upload_audio_button_component.upload(
|
503 |
+
fn=upload_audio,
|
504 |
+
inputs=[upload_audio_button_component, chatbot_component],
|
505 |
+
outputs=[chatbot_component],
|
506 |
+
queue=False,
|
507 |
+
)
|
508 |
+
|
509 |
+
# Handle document uploads.
|
510 |
+
upload_doc_button_component.upload(
|
511 |
+
fn=upload_document,
|
512 |
+
inputs=[upload_doc_button_component, chatbot_component],
|
513 |
+
outputs=[chatbot_component],
|
514 |
+
queue=False,
|
515 |
+
)
|
516 |
+
|
517 |
+
# When the Code Execution button is clicked, process the code prompt and stream the output.
|
518 |
+
run_code_execution_button.click(
|
519 |
+
fn=run_code_execution,
|
520 |
+
inputs=[text_prompt_component, chatbot_component],
|
521 |
+
outputs=[text_prompt_component, chatbot_component],
|
522 |
+
queue=False,
|
523 |
+
)
|
524 |
+
|
525 |
+
# Launch the demo interface with queuing enabled.
|
526 |
+
demo.queue(max_size=99, api_open=False).launch(debug=False, pwa=True, show_error=True)
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
google-genai==1.0.0
|