Spaces:
Sleeping
Sleeping
Upload model.py
Browse files
model.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Import Libraries
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import seaborn as sns
|
| 6 |
+
import os
|
| 7 |
+
import joblib
|
| 8 |
+
|
| 9 |
+
# Load Dataset
|
| 10 |
+
df = pd.read_csv("hospital_readmissions.csv")
|
| 11 |
+
|
| 12 |
+
# Basic Info
|
| 13 |
+
df.info()
|
| 14 |
+
df.describe()
|
| 15 |
+
|
| 16 |
+
# Missing Values
|
| 17 |
+
print(df.isnull().sum())
|
| 18 |
+
|
| 19 |
+
# Readmission Distribution
|
| 20 |
+
sns.countplot(x='readmitted', data=df)
|
| 21 |
+
plt.title('Readmitted Class Distribution')
|
| 22 |
+
plt.xlabel('Readmitted (0=No, 1=Yes)')
|
| 23 |
+
plt.ylabel('Count')
|
| 24 |
+
plt.show()
|
| 25 |
+
|
| 26 |
+
# Histograms for Numeric Features
|
| 27 |
+
numeric_features = ['time_in_hospital', 'n_lab_procedures', 'n_procedures', 'n_medications']
|
| 28 |
+
df[numeric_features].hist(figsize=(10,8), bins=15)
|
| 29 |
+
plt.suptitle('Distribution of Numeric Features')
|
| 30 |
+
plt.show()
|
| 31 |
+
|
| 32 |
+
# Encoding Categorical Variables
|
| 33 |
+
from sklearn.preprocessing import LabelEncoder
|
| 34 |
+
|
| 35 |
+
label_encoders_file = "label_encoders.pkl"
|
| 36 |
+
label_encoders_2_file = "label_encoders_2.pkl"
|
| 37 |
+
|
| 38 |
+
# Load or Fit Label Encoders
|
| 39 |
+
if os.path.exists(label_encoders_file) and os.path.exists(label_encoders_2_file):
|
| 40 |
+
print("Loading existing label encoders...")
|
| 41 |
+
label_encoders = joblib.load(label_encoders_file)
|
| 42 |
+
label_encoders_2 = joblib.load(label_encoders_2_file)
|
| 43 |
+
else:
|
| 44 |
+
print("Fitting new label encoders...")
|
| 45 |
+
categorical_cols = ['age', 'glucose_test', 'A1Ctest', 'change', 'diabetes_med', 'readmitted']
|
| 46 |
+
label_encoders = {col: LabelEncoder() for col in categorical_cols}
|
| 47 |
+
|
| 48 |
+
for col, le in label_encoders.items():
|
| 49 |
+
df[col] = le.fit_transform(df[col].astype(str))
|
| 50 |
+
|
| 51 |
+
categorical_cols_2 = ['medical_specialty', 'diag_1', 'diag_2', 'diag_3']
|
| 52 |
+
label_encoders_2 = {col: LabelEncoder() for col in categorical_cols_2}
|
| 53 |
+
|
| 54 |
+
for col2, le in label_encoders_2.items():
|
| 55 |
+
df[col2] = le.fit_transform(df[col2].astype(str))
|
| 56 |
+
|
| 57 |
+
joblib.dump(label_encoders, label_encoders_file)
|
| 58 |
+
joblib.dump(label_encoders_2, label_encoders_2_file)
|
| 59 |
+
print("Label encoders saved.")
|
| 60 |
+
|
| 61 |
+
# Feature Engineering (Interaction Terms)
|
| 62 |
+
from sklearn.preprocessing import PolynomialFeatures
|
| 63 |
+
|
| 64 |
+
poly = PolynomialFeatures(degree=2, interaction_only=True, include_bias=False)
|
| 65 |
+
interaction_terms = poly.fit_transform(df[['time_in_hospital', 'n_lab_procedures', 'n_procedures', 'n_medications']])
|
| 66 |
+
interaction_df = pd.DataFrame(interaction_terms, columns=poly.get_feature_names_out(
|
| 67 |
+
['time_in_hospital', 'n_lab_procedures', 'n_procedures', 'n_medications']))
|
| 68 |
+
df = pd.concat([df, interaction_df], axis=1)
|
| 69 |
+
|
| 70 |
+
# Splitting the Data
|
| 71 |
+
from sklearn.model_selection import train_test_split
|
| 72 |
+
|
| 73 |
+
X = df.drop('readmitted', axis=1)
|
| 74 |
+
y = df['readmitted']
|
| 75 |
+
|
| 76 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
| 77 |
+
|
| 78 |
+
# Remove duplicate columns
|
| 79 |
+
X_train = X_train.loc[:, ~X_train.columns.duplicated()]
|
| 80 |
+
X_test = X_test.loc[:, ~X_test.columns.duplicated()]
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
feature_columns_file = "feature_columns.pkl"
|
| 84 |
+
joblib.dump(X_train.columns.tolist(), feature_columns_file)
|
| 85 |
+
print(f"Feature columns saved as {feature_columns_file}")
|
| 86 |
+
|
| 87 |
+
# Define Model Filenames
|
| 88 |
+
rf_model_file = "rf_tuned_model.pkl"
|
| 89 |
+
xgb_model_file = "xgb_model.pkl"
|
| 90 |
+
lgbm_model_file = "lgbm_model.pkl"
|
| 91 |
+
|
| 92 |
+
# Random Forest Classifier
|
| 93 |
+
from sklearn.ensemble import RandomForestClassifier
|
| 94 |
+
|
| 95 |
+
if os.path.exists(rf_model_file):
|
| 96 |
+
print(f"Loading existing Random Forest model from {rf_model_file}...")
|
| 97 |
+
rf_model = joblib.load(rf_model_file)
|
| 98 |
+
else:
|
| 99 |
+
print("Training Random Forest model...")
|
| 100 |
+
rf_model = RandomForestClassifier(
|
| 101 |
+
bootstrap=True,
|
| 102 |
+
max_depth=10,
|
| 103 |
+
min_samples_leaf=4,
|
| 104 |
+
min_samples_split=5,
|
| 105 |
+
n_estimators=200,
|
| 106 |
+
random_state=42
|
| 107 |
+
)
|
| 108 |
+
rf_model.fit(X_train, y_train)
|
| 109 |
+
joblib.dump(rf_model, rf_model_file)
|
| 110 |
+
print(f"Random Forest model saved as {rf_model_file}")
|
| 111 |
+
|
| 112 |
+
# XGBoost Classifier
|
| 113 |
+
from xgboost import XGBClassifier
|
| 114 |
+
|
| 115 |
+
if os.path.exists(xgb_model_file):
|
| 116 |
+
print(f"Loading existing XGBoost model from {xgb_model_file}...")
|
| 117 |
+
xgb_model = joblib.load(xgb_model_file)
|
| 118 |
+
else:
|
| 119 |
+
print("Training XGBoost model...")
|
| 120 |
+
xgb_model = XGBClassifier(
|
| 121 |
+
n_estimators=200,
|
| 122 |
+
max_depth=10,
|
| 123 |
+
learning_rate=0.1,
|
| 124 |
+
subsample=0.8,
|
| 125 |
+
colsample_bytree=0.8,
|
| 126 |
+
random_state=42
|
| 127 |
+
)
|
| 128 |
+
xgb_model.fit(X_train, y_train)
|
| 129 |
+
joblib.dump(xgb_model, xgb_model_file)
|
| 130 |
+
print(f"XGBoost model saved as {xgb_model_file}")
|
| 131 |
+
|
| 132 |
+
# LightGBM Classifier
|
| 133 |
+
from lightgbm import LGBMClassifier
|
| 134 |
+
|
| 135 |
+
if os.path.exists(lgbm_model_file):
|
| 136 |
+
print(f"Loading existing LightGBM model from {lgbm_model_file}...")
|
| 137 |
+
lgbm_model = joblib.load(lgbm_model_file)
|
| 138 |
+
else:
|
| 139 |
+
print("Training LightGBM model...")
|
| 140 |
+
lgbm_model = LGBMClassifier(
|
| 141 |
+
n_estimators=200,
|
| 142 |
+
max_depth=10,
|
| 143 |
+
learning_rate=0.1,
|
| 144 |
+
subsample=0.8,
|
| 145 |
+
colsample_bytree=0.8,
|
| 146 |
+
random_state=42
|
| 147 |
+
)
|
| 148 |
+
lgbm_model.fit(X_train, y_train)
|
| 149 |
+
joblib.dump(lgbm_model, lgbm_model_file)
|
| 150 |
+
print(f"LightGBM model saved as {lgbm_model_file}")
|
| 151 |
+
|
| 152 |
+
# Predictions
|
| 153 |
+
y_pred_rf = rf_model.predict(X_test)
|
| 154 |
+
y_proba_rf = rf_model.predict_proba(X_test)[:, 1]
|
| 155 |
+
|
| 156 |
+
y_pred_xgb = xgb_model.predict(X_test)
|
| 157 |
+
y_proba_xgb = xgb_model.predict_proba(X_test)[:, 1]
|
| 158 |
+
|
| 159 |
+
y_pred_lgbm = lgbm_model.predict(X_test)
|
| 160 |
+
y_proba_lgbm = lgbm_model.predict_proba(X_test)[:, 1]
|
| 161 |
+
|
| 162 |
+
# Evaluation
|
| 163 |
+
from sklearn.metrics import classification_report, roc_auc_score
|
| 164 |
+
|
| 165 |
+
print("Random Forest Classification Report:\n", classification_report(y_test, y_pred_rf))
|
| 166 |
+
print("Random Forest ROC-AUC Score:", roc_auc_score(y_test, y_proba_rf))
|
| 167 |
+
|
| 168 |
+
print("XGBoost Classification Report:\n", classification_report(y_test, y_pred_xgb))
|
| 169 |
+
print("XGBoost ROC-AUC Score:", roc_auc_score(y_test, y_proba_xgb))
|
| 170 |
+
|
| 171 |
+
print("LightGBM Classification Report:\n", classification_report(y_test, y_pred_lgbm))
|
| 172 |
+
print("LightGBM ROC-AUC Score:", roc_auc_score(y_test, y_proba_lgbm))
|
| 173 |
+
|
| 174 |
+
# Compare Models
|
| 175 |
+
results = {
|
| 176 |
+
"Model": ["Random Forest", "XGBoost", "LightGBM"],
|
| 177 |
+
"ROC-AUC Score": [roc_auc_score(y_test, y_proba_rf),
|
| 178 |
+
roc_auc_score(y_test, y_proba_xgb),
|
| 179 |
+
roc_auc_score(y_test, y_proba_lgbm)]
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
results_df = pd.DataFrame(results)
|
| 183 |
+
print("\nModel Performance Summary:")
|
| 184 |
+
print(results_df)
|
| 185 |
+
|
| 186 |
+
# Plot Model Comparison
|
| 187 |
+
sns.barplot(data=results_df, x="Model", y="ROC-AUC Score", palette="viridis")
|
| 188 |
+
plt.title("Model ROC-AUC Comparison")
|
| 189 |
+
plt.ylabel("ROC-AUC Score")
|
| 190 |
+
plt.show()
|