import copy as cp import json from collections import defaultdict from urllib.request import urlopen import gradio as gr import numpy as np import pandas as pd from meta_data import DEFAULT_BENCH, META_FIELDS, RESULTS def load_results_local(): with open(RESULTS, 'r') as infile: data = json.load(infile) return data def nth_large(val, vals): return sum([1 for v in vals if v > val]) + 1 def model_size_flag(sz, FIELDS): if pd.isna(sz) and 'Unknown' in FIELDS: return True if pd.isna(sz): return False if '7B' in FIELDS and sz == 7: return True if '13B' in FIELDS and sz == 13: return True if '70B' in FIELDS and sz == 70: return True return False def model_type_flag(line, FIELDS): if 'OpenSource' in FIELDS and line['OpenSource'] == 'Yes': return True if 'API' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'Yes': return True # if 'Proprietary' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'No': # return True if 'Commercial LLMs' in FIELDS and line['Commercial LLMs'] == 'Yes': return True if 'General LLMs' in FIELDS and line['General LLMs'] == 'Yes': return True if 'Medical LLMs' in FIELDS and line['Medical LLMs'] == 'Yes': return True if 'SOTA' in FIELDS and line['SOTA'] == 'Yes': return True return False def BUILD_L1_DF(results, fields): check_box = {} check_box['essential'] = ['Method', 'Param (B)'] # revise there to set default dataset check_box['required'] = ['Avg Score', 'Avg Rank'] + DEFAULT_BENCH check_box['avg'] = ['Avg Score', 'Avg Rank'] check_box['all'] = check_box['avg'] + fields type_map = defaultdict(lambda: 'number') type_map['Method'] = 'html' type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str' check_box['type_map'] = type_map df = generate_table(results, fields) return df, check_box def generate_table(results, fields): def get_mmbench_v11(item): assert 'MMBench_TEST_CN_V11' in item and 'MMBench_TEST_EN_V11' in item val = (item['MMBench_TEST_CN_V11']['Overall'] + item['MMBench_TEST_EN_V11']['Overall']) / 2 val = float(f'{val:.1f}') return val res = defaultdict(list) for i, m in enumerate(results): item = results[m] meta = item['META'] for k in META_FIELDS: if k == 'Param (B)': param = meta['Parameters'] res[k].append(float(param.replace('B', '')) if param != '' else None) elif k == 'Method': name = meta['Method'][0] res[k].append(f'{name}') res['name'].append(name) else: res[k].append(meta[k]) scores, ranks = [], [] for d in fields: key_name = 'Overall' if d != 'OCRBench' else 'Final Score' # Every Model should have MMBench_V11 results if d == 'MMBench_V11': val = get_mmbench_v11(item) res[d].append(val) scores.append(val) ranks.append(nth_large(val, [get_mmbench_v11(x) for x in results.values()])) elif d in item: res[d].append(item[d][key_name]) if d == 'MME': scores.append(item[d][key_name] / 28) elif d == 'OCRBench': scores.append(item[d][key_name] / 10) else: scores.append(item[d][key_name]) ranks.append(nth_large(item[d][key_name], [x[d][key_name] for x in results.values() if d in x])) else: res[d].append(None) scores.append(None) ranks.append(None) res['Avg Score'].append(round(np.mean(scores), 1) if None not in scores else None) res['Avg Rank'].append(round(np.mean(ranks), 2) if None not in ranks else None) df = pd.DataFrame(res) valid, missing = df[~pd.isna(df['Avg Score'])], df[pd.isna(df['Avg Score'])] valid = valid.sort_values('Avg Score') valid = valid.iloc[::-1] if len(fields): missing = missing.sort_values('MMBench_V11' if 'MMBench_V11' in fields else fields[0]) missing = missing.iloc[::-1] df = pd.concat([valid, missing]) return df