Spaces:
Sleeping
Sleeping
import abc | |
import gradio as gr | |
from gen_table import * | |
from meta_data import * | |
with gr.Blocks() as demo: | |
struct = load_results_local() | |
results = struct['results'] | |
N_MODEL = len(results) | |
N_DATA = len(results['Claude-2']) - 1 | |
DATASETS = list(results['Claude-2']) | |
DATASETS.remove('META') | |
print(DATASETS) | |
gr.Markdown(LEADERBORAD_INTRODUCTION) | |
structs = [abc.abstractproperty() for _ in range(N_DATA)] | |
with gr.Tabs(elem_classes='tab-buttons') as tabs: | |
with gr.TabItem('🏅 Medical LLM Leaderboard', elem_id='main', id=0): | |
gr.Markdown(LEADERBOARD_MD['MAIN']) | |
gr.Image( | |
value=IMAGE_PATH, | |
label='Medical LLM Benchmark', | |
width=1200, | |
height=900 | |
) | |
gr.Markdown(LEADERBOARD_MD['RESULT']) | |
_, check_box = BUILD_L1_DF(results, MAIN_FIELDS) | |
table = generate_table(results, DEFAULT_BENCH) | |
table['Rank'] = list(range(1, len(table) + 1)) | |
type_map = check_box['type_map'] | |
type_map['Rank'] = 'number' | |
checkbox_group = gr.CheckboxGroup( | |
choices=check_box['all'], | |
value=check_box['required'], | |
label='Evaluation Dimension', | |
interactive=True, | |
) | |
headers = ['Rank'] + check_box['essential'] + checkbox_group.value | |
with gr.Row(): | |
model_size = gr.CheckboxGroup( | |
choices=MODEL_SIZE, | |
value=MODEL_SIZE, | |
label='Model Size', | |
interactive=True | |
) | |
model_type = gr.CheckboxGroup( | |
choices=MODEL_TYPE, | |
value=MODEL_TYPE, | |
label='Model Type', | |
interactive=True | |
) | |
print(headers) | |
print(check_box['essential']) | |
data_component = gr.components.DataFrame( | |
value=table[headers], | |
type='pandas', | |
datatype=[type_map[x] for x in headers], | |
interactive=False, | |
visible=True, | |
elem_classes="data-table" | |
) | |
def filter_df(fields, model_size, model_type): | |
filter_list = ['Avg Score', 'Avg Rank'] | |
headers = ['Rank'] + check_box['essential'] + fields | |
new_fields = [field for field in fields if field not in filter_list] | |
df = generate_table(results, new_fields) | |
df['flag'] = [model_size_flag(x, model_size) for x in df['Param (B)']] | |
df = df[df['flag']] | |
df.pop('flag') | |
if len(df): | |
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))] | |
df = df[df['flag']] | |
df.pop('flag') | |
df['Rank'] = list(range(1, len(df) + 1)) | |
comp = gr.components.DataFrame( | |
value=df[headers], | |
type='pandas', | |
datatype=[type_map[x] for x in headers], | |
interactive=False, | |
visible=True) | |
return comp | |
for cbox in [checkbox_group, model_size, model_type]: | |
cbox.change(fn=filter_df, inputs=[checkbox_group, model_size, model_type], outputs=data_component) | |
with gr.Row(): | |
with gr.Accordion('Citation', open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
elem_id='citation-button', | |
lines=10) | |
if __name__ == '__main__': | |
demo.launch(server_name='0.0.0.0') | |