Spaces:
Build error
Build error
test run -4
Browse files- app.py +24 -32
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -44,14 +44,6 @@ def predict(input_image, model=None, preprocess_fn=None, device="cpu"):
|
|
| 44 |
|
| 45 |
|
| 46 |
if __name__ == "__main__":
|
| 47 |
-
# Create a mapping of class ID to RGB value.
|
| 48 |
-
id2color = {
|
| 49 |
-
0: (0, 0, 0), # background pixel
|
| 50 |
-
1: (0, 0, 255), # Stomach
|
| 51 |
-
2: (0, 255, 0), # Small bowel
|
| 52 |
-
3: (255, 0, 0), # large bowel
|
| 53 |
-
}
|
| 54 |
-
|
| 55 |
class2hexcolor = {"Stomach": "#007fff", "Small bowel": "#009A17", "Large bowel": "#FF0000"}
|
| 56 |
|
| 57 |
DEVICE = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
|
|
@@ -72,29 +64,29 @@ if __name__ == "__main__":
|
|
| 72 |
]
|
| 73 |
)
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
with gr.Blocks(title="Medical Image Segmentation") as demo:
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
|
| 100 |
demo.launch()
|
|
|
|
| 44 |
|
| 45 |
|
| 46 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
class2hexcolor = {"Stomach": "#007fff", "Small bowel": "#009A17", "Large bowel": "#FF0000"}
|
| 48 |
|
| 49 |
DEVICE = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
|
|
|
|
| 64 |
]
|
| 65 |
)
|
| 66 |
|
| 67 |
+
images_dir = glob(os.path.join(os.getcwd(), "samples") + os.sep + "*.png")
|
| 68 |
+
examples = [i for i in np.random.choice(images_dir, size=8, replace=False)]
|
| 69 |
+
demo = gr.Interface(
|
| 70 |
+
fn=partial(predict, model=model, preprocess_fn=preprocess, device=DEVICE),
|
| 71 |
+
inputs=gr.Image(type="pil", height=300, width=300, label="Input image"),
|
| 72 |
+
outputs=gr.AnnotatedImage(label="Predictions", height=300, width=300, color_map=class2hexcolor),
|
| 73 |
+
examples=examples,
|
| 74 |
+
cache_examples=False,
|
| 75 |
+
allow_flagging="never",
|
| 76 |
+
title="Medical Image Segmentation with UW-Madison GI Tract Dataset",
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
# with gr.Blocks(title="Medical Image Segmentation") as demo:
|
| 80 |
+
# gr.Markdown("""<h1><center>Medical Image Segmentation with UW-Madison GI Tract Dataset</center></h1>""")
|
| 81 |
+
# with gr.Row():
|
| 82 |
+
# img_input = gr.Image(type="pil", height=300, width=300, label="Input image")
|
| 83 |
+
# img_output = gr.AnnotatedImage(label="Predictions", height=300, width=300, color_map=class2hexcolor)
|
| 84 |
+
|
| 85 |
+
# section_btn = gr.Button("Generate Predictions")
|
| 86 |
+
# section_btn.click(partial(predict, model=model, preprocess_fn=preprocess, device=DEVICE), img_input, img_output)
|
| 87 |
+
|
| 88 |
+
# images_dir = glob(os.path.join(os.getcwd(), "samples") + os.sep + "*.png")
|
| 89 |
+
# examples = [i for i in np.random.choice(images_dir, size=8, replace=False)]
|
| 90 |
+
# gr.Examples(examples=examples, inputs=img_input, outputs=img_output)
|
| 91 |
|
| 92 |
demo.launch()
|
requirements.txt
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
--find-links https://download.pytorch.org/whl/torch_stable.html
|
| 2 |
torch==2.0.0+cpu
|
| 3 |
torchvision==0.15.0
|
| 4 |
-
transformers==4.30.2
|
|
|
|
|
|
| 1 |
--find-links https://download.pytorch.org/whl/torch_stable.html
|
| 2 |
torch==2.0.0+cpu
|
| 3 |
torchvision==0.15.0
|
| 4 |
+
transformers==4.30.2
|
| 5 |
+
gradio
|