test run -4
Browse files- app.py +24 -32
- requirements.txt +2 -1
app.py
CHANGED
@@ -44,14 +44,6 @@ def predict(input_image, model=None, preprocess_fn=None, device="cpu"):
|
|
44 |
|
45 |
|
46 |
if __name__ == "__main__":
|
47 |
-
# Create a mapping of class ID to RGB value.
|
48 |
-
id2color = {
|
49 |
-
0: (0, 0, 0), # background pixel
|
50 |
-
1: (0, 0, 255), # Stomach
|
51 |
-
2: (0, 255, 0), # Small bowel
|
52 |
-
3: (255, 0, 0), # large bowel
|
53 |
-
}
|
54 |
-
|
55 |
class2hexcolor = {"Stomach": "#007fff", "Small bowel": "#009A17", "Large bowel": "#FF0000"}
|
56 |
|
57 |
DEVICE = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
|
@@ -72,29 +64,29 @@ if __name__ == "__main__":
|
|
72 |
]
|
73 |
)
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
with gr.Blocks(title="Medical Image Segmentation") as demo:
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
|
100 |
demo.launch()
|
|
|
44 |
|
45 |
|
46 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
class2hexcolor = {"Stomach": "#007fff", "Small bowel": "#009A17", "Large bowel": "#FF0000"}
|
48 |
|
49 |
DEVICE = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
|
|
|
64 |
]
|
65 |
)
|
66 |
|
67 |
+
images_dir = glob(os.path.join(os.getcwd(), "samples") + os.sep + "*.png")
|
68 |
+
examples = [i for i in np.random.choice(images_dir, size=8, replace=False)]
|
69 |
+
demo = gr.Interface(
|
70 |
+
fn=partial(predict, model=model, preprocess_fn=preprocess, device=DEVICE),
|
71 |
+
inputs=gr.Image(type="pil", height=300, width=300, label="Input image"),
|
72 |
+
outputs=gr.AnnotatedImage(label="Predictions", height=300, width=300, color_map=class2hexcolor),
|
73 |
+
examples=examples,
|
74 |
+
cache_examples=False,
|
75 |
+
allow_flagging="never",
|
76 |
+
title="Medical Image Segmentation with UW-Madison GI Tract Dataset",
|
77 |
+
)
|
78 |
+
|
79 |
+
# with gr.Blocks(title="Medical Image Segmentation") as demo:
|
80 |
+
# gr.Markdown("""<h1><center>Medical Image Segmentation with UW-Madison GI Tract Dataset</center></h1>""")
|
81 |
+
# with gr.Row():
|
82 |
+
# img_input = gr.Image(type="pil", height=300, width=300, label="Input image")
|
83 |
+
# img_output = gr.AnnotatedImage(label="Predictions", height=300, width=300, color_map=class2hexcolor)
|
84 |
+
|
85 |
+
# section_btn = gr.Button("Generate Predictions")
|
86 |
+
# section_btn.click(partial(predict, model=model, preprocess_fn=preprocess, device=DEVICE), img_input, img_output)
|
87 |
+
|
88 |
+
# images_dir = glob(os.path.join(os.getcwd(), "samples") + os.sep + "*.png")
|
89 |
+
# examples = [i for i in np.random.choice(images_dir, size=8, replace=False)]
|
90 |
+
# gr.Examples(examples=examples, inputs=img_input, outputs=img_output)
|
91 |
|
92 |
demo.launch()
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
--find-links https://download.pytorch.org/whl/torch_stable.html
|
2 |
torch==2.0.0+cpu
|
3 |
torchvision==0.15.0
|
4 |
-
transformers==4.30.2
|
|
|
|
1 |
--find-links https://download.pytorch.org/whl/torch_stable.html
|
2 |
torch==2.0.0+cpu
|
3 |
torchvision==0.15.0
|
4 |
+
transformers==4.30.2
|
5 |
+
gradio
|