Spaces:
Sleeping
Sleeping
for elevation
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import geopandas as gpd
|
| 2 |
import pandas as pd
|
| 3 |
-
from shapely.geometry import Polygon, LineString, Point
|
| 4 |
from shapely.ops import unary_union
|
| 5 |
import xml.etree.ElementTree as ET
|
| 6 |
import zipfile
|
|
@@ -9,100 +9,150 @@ import matplotlib.pyplot as plt
|
|
| 9 |
import streamlit as st
|
| 10 |
from transformers import pipeline
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
k = ET.ElementTree(ET.fromstring(cont))
|
| 15 |
root = k.getroot()
|
| 16 |
ns = {'kml': 'http://www.opengis.net/kml/2.2'}
|
| 17 |
-
|
| 18 |
shapes = []
|
| 19 |
for mark in root.findall('.//kml:Placemark', ns):
|
| 20 |
-
|
|
|
|
| 21 |
if polygon is not None:
|
| 22 |
coordinates = polygon.text.strip().split()
|
| 23 |
coords = [(float(lon), float(lat), float(alt)) for lon, lat, alt in [coord.split(',') for coord in coordinates]]
|
| 24 |
-
shapes.append(Polygon(
|
| 25 |
-
|
|
|
|
| 26 |
line = mark.find('.//kml:LineString/kml:coordinates', ns)
|
| 27 |
if line is not None:
|
| 28 |
coordinates = line.text.strip().split()
|
| 29 |
coords = [(float(lon), float(lat), float(alt)) for lon, lat, alt in [coord.split(',') for coord in coordinates]]
|
| 30 |
shapes.append(LineString(coords))
|
| 31 |
-
|
|
|
|
| 32 |
point = mark.find('.//kml:Point/kml:coordinates', ns)
|
| 33 |
if point is not None:
|
| 34 |
lon, lat, alt = map(float, point.text.strip().split(','))
|
| 35 |
shapes.append(Point(lon, lat, alt))
|
| 36 |
-
|
| 37 |
return shapes if shapes else None
|
| 38 |
|
| 39 |
-
|
|
|
|
| 40 |
with zipfile.ZipFile(kmz_file, 'r') as zip_ref:
|
| 41 |
zip_ref.extractall('temp_kml')
|
| 42 |
kml_file = [f for f in os.listdir('temp_kml') if f.endswith('.kml')][0]
|
| 43 |
with open(os.path.join('temp_kml', kml_file), 'rb') as f:
|
| 44 |
-
return
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
|
|
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
|
|
|
| 55 |
return "Invalid KML shape or no valid polygon found.", None
|
| 56 |
-
overlaps = [gdf[gdf.intersects(kml_shape)] for kml_shape in f if not gdf[gdf.intersects(kml_shape)].empty]
|
| 57 |
-
return overlaps if overlaps else "Boundary doesn't match", unary_union([geom for intersect in overlaps for geom in intersect.geometry])
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
summarizer = pipeline("summarization", model="gpt2")
|
| 68 |
-
|
|
|
|
| 69 |
prompt = f"""
|
| 70 |
**Total Land Area**: {total_acreage:.2f} acres
|
| 71 |
-
**Usable Area**: {
|
| 72 |
**Flood-prone Zones**:
|
| 73 |
-
{
|
| 74 |
-
Summarize
|
| 75 |
"""
|
| 76 |
response = summarizer(prompt, max_length=200, min_length=30, do_sample=False)
|
| 77 |
return response[0]['summary_text']
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
dela['geometry'] = dela['geometry'].apply(lambda x: x.buffer(0) if not x.is_valid else x)
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
else:
|
| 91 |
-
|
| 92 |
st.write(f"Flood Zone Areas:")
|
| 93 |
-
for zone, area in
|
| 94 |
st.write(f" Zone {zone}: {area:.2f} acres")
|
| 95 |
-
st.write(f"\nNon-Flooded Land Area: {
|
| 96 |
-
st.write(f"\nMerged Area of Intersected Boundary: {
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
|
|
|
| 102 |
gpd.GeoDataFrame(geometry=[every_int], crs=dela.crs).plot(ax=ax, color='red', alpha=0.7)
|
| 103 |
-
|
| 104 |
-
|
| 105 |
else:
|
| 106 |
st.write("No valid geometries found in the uploaded KML file.")
|
| 107 |
else:
|
| 108 |
-
st.write("Please upload a KML/KMZ file
|
|
|
|
| 1 |
import geopandas as gpd
|
| 2 |
import pandas as pd
|
| 3 |
+
from shapely.geometry import Polygon, LineString, Point
|
| 4 |
from shapely.ops import unary_union
|
| 5 |
import xml.etree.ElementTree as ET
|
| 6 |
import zipfile
|
|
|
|
| 9 |
import streamlit as st
|
| 10 |
from transformers import pipeline
|
| 11 |
|
| 12 |
+
# β
Function to remove Z values (flatten 3D to 2D)
|
| 13 |
+
def drop_z(geom):
|
| 14 |
+
"""Convert 3D geometry to 2D by removing Z values"""
|
| 15 |
+
if geom.geom_type == 'Polygon':
|
| 16 |
+
return Polygon([(x, y) for x, y, _ in geom.exterior.coords])
|
| 17 |
+
elif geom.geom_type == 'LineString':
|
| 18 |
+
return LineString([(x, y) for x, y, _ in geom.coords])
|
| 19 |
+
elif geom.geom_type == 'Point':
|
| 20 |
+
return Point(geom.x, geom.y)
|
| 21 |
+
return geom # Return unchanged if not 3D
|
| 22 |
+
|
| 23 |
+
# β
Function to parse KML file
|
| 24 |
+
def parse_kml(kml_file):
|
| 25 |
+
cont = kml_file.decode('utf-8') # Decode bytes to string
|
| 26 |
k = ET.ElementTree(ET.fromstring(cont))
|
| 27 |
root = k.getroot()
|
| 28 |
ns = {'kml': 'http://www.opengis.net/kml/2.2'}
|
| 29 |
+
|
| 30 |
shapes = []
|
| 31 |
for mark in root.findall('.//kml:Placemark', ns):
|
| 32 |
+
# Extract Polygon
|
| 33 |
+
polygon = mark.find('.//kml:Polygon/kml:outerBoundaryIs/kml:LinearRing/kml:coordinates', ns)
|
| 34 |
if polygon is not None:
|
| 35 |
coordinates = polygon.text.strip().split()
|
| 36 |
coords = [(float(lon), float(lat), float(alt)) for lon, lat, alt in [coord.split(',') for coord in coordinates]]
|
| 37 |
+
shapes.append(Polygon(coords))
|
| 38 |
+
|
| 39 |
+
# Extract LineString
|
| 40 |
line = mark.find('.//kml:LineString/kml:coordinates', ns)
|
| 41 |
if line is not None:
|
| 42 |
coordinates = line.text.strip().split()
|
| 43 |
coords = [(float(lon), float(lat), float(alt)) for lon, lat, alt in [coord.split(',') for coord in coordinates]]
|
| 44 |
shapes.append(LineString(coords))
|
| 45 |
+
|
| 46 |
+
# Extract Point
|
| 47 |
point = mark.find('.//kml:Point/kml:coordinates', ns)
|
| 48 |
if point is not None:
|
| 49 |
lon, lat, alt = map(float, point.text.strip().split(','))
|
| 50 |
shapes.append(Point(lon, lat, alt))
|
| 51 |
+
|
| 52 |
return shapes if shapes else None
|
| 53 |
|
| 54 |
+
# β
Function to extract KMZ file
|
| 55 |
+
def extract_kmz(kmz_file):
|
| 56 |
with zipfile.ZipFile(kmz_file, 'r') as zip_ref:
|
| 57 |
zip_ref.extractall('temp_kml')
|
| 58 |
kml_file = [f for f in os.listdir('temp_kml') if f.endswith('.kml')][0]
|
| 59 |
with open(os.path.join('temp_kml', kml_file), 'rb') as f:
|
| 60 |
+
return parse_kml(f.read())
|
| 61 |
|
| 62 |
+
# β
Choose between KML and KMZ
|
| 63 |
+
def choose_file(uploaded_file):
|
| 64 |
+
file_bytes = uploaded_file.read()
|
| 65 |
+
return extract_kmz(file_bytes) if uploaded_file.name.endswith('.kmz') else parse_kml(file_bytes)
|
| 66 |
|
| 67 |
+
# β
Streamlit UI
|
| 68 |
+
st.title("Flood Zone Analysis")
|
| 69 |
+
uploaded_file = st.file_uploader("Upload KML/KMZ file", type=['kml', 'kmz'])
|
| 70 |
|
| 71 |
+
# β
Compare boundaries
|
| 72 |
+
def check_boundary(kml_shapes, gdf):
|
| 73 |
+
if not kml_shapes:
|
| 74 |
return "Invalid KML shape or no valid polygon found.", None
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
kml_gdf = gpd.GeoDataFrame(geometry=kml_shapes, crs="EPSG:4326")
|
| 77 |
+
kml_gdf['geometry'] = kml_gdf['geometry'].apply(drop_z) # Remove Z values
|
| 78 |
+
kml_gdf = kml_gdf.to_crs(epsg=3857)
|
| 79 |
+
|
| 80 |
+
overlaps = []
|
| 81 |
+
for kml_shape in kml_gdf.geometry:
|
| 82 |
+
intersection = gdf[gdf.intersects(kml_shape)]
|
| 83 |
+
if not intersection.empty:
|
| 84 |
+
overlaps.append(intersection)
|
| 85 |
+
|
| 86 |
+
if not overlaps:
|
| 87 |
+
return "Boundary doesn't match", None
|
| 88 |
+
|
| 89 |
+
every_int = unary_union([geom for intersect in overlaps for geom in intersect.geometry])
|
| 90 |
+
return overlaps, every_int
|
| 91 |
|
| 92 |
+
# β
Calculate land use and flood zones
|
| 93 |
+
def calculate_land(overlaps, every_int):
|
| 94 |
+
all_data = pd.concat(overlaps)
|
| 95 |
+
all_data['area_acres'] = all_data.geometry.area / 4046.86 # Convert to acres
|
| 96 |
+
|
| 97 |
+
flood_zones = {zone: all_data[all_data['FLD_ZONE'] == zone]['area_acres'].sum() for zone in all_data['FLD_ZONE'].unique()}
|
| 98 |
+
non_flooded_area = all_data[~all_data['FLD_ZONE'].isin(['A', 'AE', 'AH', 'AO', 'VE'])]['area_acres'].sum()
|
| 99 |
+
merged_acreage = every_int.area / 4046.86
|
| 100 |
+
|
| 101 |
+
return flood_zones, non_flooded_area, merged_acreage
|
| 102 |
+
|
| 103 |
+
# β
Generate summary
|
| 104 |
+
def generate_summary(flood_zones, non_flooded, total_acreage):
|
| 105 |
summarizer = pipeline("summarization", model="gpt2")
|
| 106 |
+
flood_summary = "\n".join([f" Zone {zone}: {flood_zones.get(zone, 0):.2f} acres" for zone in ['A', 'AE', 'AH', 'AO', 'VE']])
|
| 107 |
+
|
| 108 |
prompt = f"""
|
| 109 |
**Total Land Area**: {total_acreage:.2f} acres
|
| 110 |
+
**Usable Area**: {non_flooded:.2f} acres
|
| 111 |
**Flood-prone Zones**:
|
| 112 |
+
{flood_summary}
|
| 113 |
+
Summarize this in 2-3 sentences.
|
| 114 |
"""
|
| 115 |
response = summarizer(prompt, max_length=200, min_length=30, do_sample=False)
|
| 116 |
return response[0]['summary_text']
|
| 117 |
|
| 118 |
+
# β
Main processing
|
| 119 |
+
if uploaded_file is not None:
|
| 120 |
+
# Load shapefile
|
| 121 |
+
kent = gpd.read_file("K_FLD_HAZ_AR.shp")
|
| 122 |
+
nc = gpd.read_file("N_FLD_HAZ_AR.shp")
|
| 123 |
+
sussex = gpd.read_file("S_FLD_HAZ_AR.shp")
|
| 124 |
+
dela = gpd.GeoDataFrame(pd.concat([kent, nc, sussex], ignore_index=True))
|
| 125 |
+
dela = dela.set_crs(kent.crs, allow_override=True).to_crs(epsg=3857)
|
| 126 |
dela['geometry'] = dela['geometry'].apply(lambda x: x.buffer(0) if not x.is_valid else x)
|
| 127 |
+
|
| 128 |
+
# Process uploaded KML/KMZ
|
| 129 |
+
kml_shapes = choose_file(uploaded_file)
|
| 130 |
+
if kml_shapes:
|
| 131 |
+
# Remove Z values
|
| 132 |
+
kml_shapes = [drop_z(geom) for geom in kml_shapes]
|
| 133 |
+
|
| 134 |
+
# Compare with SHP
|
| 135 |
+
result, every_int = check_boundary(kml_shapes, dela)
|
| 136 |
+
|
| 137 |
+
if isinstance(result, str):
|
| 138 |
+
st.write(result)
|
| 139 |
else:
|
| 140 |
+
flood_zones, non_flooded, merged_acreage = calculate_land(result, every_int)
|
| 141 |
st.write(f"Flood Zone Areas:")
|
| 142 |
+
for zone, area in flood_zones.items():
|
| 143 |
st.write(f" Zone {zone}: {area:.2f} acres")
|
| 144 |
+
st.write(f"\nNon-Flooded Land Area: {non_flooded:.2f} acres")
|
| 145 |
+
st.write(f"\nMerged Area of Intersected Boundary: {merged_acreage:.2f} acres")
|
| 146 |
+
summary = generate_summary(flood_zones, non_flooded, merged_acreage)
|
| 147 |
+
st.write(f"Summary: {summary}")
|
| 148 |
+
|
| 149 |
+
# Show map
|
| 150 |
+
fig, ax = plt.subplots(figsize=(10, 10))
|
| 151 |
+
dela.plot(ax=ax, color='blue', alpha=0.5)
|
| 152 |
gpd.GeoDataFrame(geometry=[every_int], crs=dela.crs).plot(ax=ax, color='red', alpha=0.7)
|
| 153 |
+
gpd.GeoDataFrame(geometry=kml_shapes, crs="EPSG:4326").to_crs(epsg=3857).plot(ax=ax, color='green', alpha=0.3)
|
| 154 |
+
st.pyplot(fig)
|
| 155 |
else:
|
| 156 |
st.write("No valid geometries found in the uploaded KML file.")
|
| 157 |
else:
|
| 158 |
+
st.write("Please upload a KML/KMZ file.")
|