Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,50 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
yield response
|
41 |
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
"""
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import torch
|
3 |
+
from transformers import NougatProcessor, VisionEncoderDecoderModel
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
+
# Load model and processor once at startup
|
7 |
+
processor = NougatProcessor.from_pretrained("MohamedRashad/arabic-small-nougat")
|
8 |
+
model = VisionEncoderDecoderModel.from_pretrained("MohamedRashad/arabic-small-nougat")
|
|
|
9 |
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
model.to(device)
|
12 |
|
13 |
+
context_length = 2048
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
def predict(image):
|
16 |
+
# Ensure image is in RGB format
|
17 |
+
image = image.convert("RGB")
|
|
|
|
|
18 |
|
19 |
+
# Prepare input
|
20 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
21 |
|
22 |
+
# Generate transcription
|
23 |
+
outputs = model.generate(
|
24 |
+
pixel_values.to(device),
|
25 |
+
min_length=1,
|
26 |
+
max_new_tokens=context_length,
|
27 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
28 |
+
)
|
29 |
|
30 |
+
# Decode output
|
31 |
+
page_sequence = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
32 |
+
page_sequence = processor.post_process_generation(page_sequence, fix_markdown=False)
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
return page_sequence
|
|
|
35 |
|
36 |
+
# Gradio Interface
|
37 |
+
title = "Arabic Nougat OCR - Handwritten & Printed Document Recognizer"
|
38 |
+
description = "Transcribe Arabic documents using a fine-tuned Nougat model."
|
39 |
|
40 |
+
interface = gr.Interface(
|
41 |
+
fn=predict,
|
42 |
+
inputs=gr.Image(type="pil", label="Upload an Arabic Document"),
|
43 |
+
outputs=gr.Textbox(label="Transcription", lines=15),
|
44 |
+
title=title,
|
45 |
+
description=description,
|
46 |
+
examples=[["example_1.jpg"], ["example_2.jpg"]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
)
|
48 |
|
|
|
49 |
if __name__ == "__main__":
|
50 |
+
interface.launch()
|