khodour commited on
Commit
1994262
·
verified ·
1 Parent(s): 213b9b7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -50
app.py CHANGED
@@ -1,64 +1,50 @@
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
27
 
28
- response = ""
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ from PIL import Image
2
+ import torch
3
+ from transformers import NougatProcessor, VisionEncoderDecoderModel
4
  import gradio as gr
 
5
 
6
+ # Load model and processor once at startup
7
+ processor = NougatProcessor.from_pretrained("MohamedRashad/arabic-small-nougat")
8
+ model = VisionEncoderDecoderModel.from_pretrained("MohamedRashad/arabic-small-nougat")
 
9
 
10
+ device = "cuda" if torch.cuda.is_available() else "cpu"
11
+ model.to(device)
12
 
13
+ context_length = 2048
 
 
 
 
 
 
 
 
14
 
15
+ def predict(image):
16
+ # Ensure image is in RGB format
17
+ image = image.convert("RGB")
 
 
18
 
19
+ # Prepare input
20
+ pixel_values = processor(images=image, return_tensors="pt").pixel_values
21
 
22
+ # Generate transcription
23
+ outputs = model.generate(
24
+ pixel_values.to(device),
25
+ min_length=1,
26
+ max_new_tokens=context_length,
27
+ bad_words_ids=[[processor.tokenizer.unk_token_id]],
28
+ )
29
 
30
+ # Decode output
31
+ page_sequence = processor.batch_decode(outputs, skip_special_tokens=True)[0]
32
+ page_sequence = processor.post_process_generation(page_sequence, fix_markdown=False)
 
 
 
 
 
33
 
34
+ return page_sequence
 
35
 
36
+ # Gradio Interface
37
+ title = "Arabic Nougat OCR - Handwritten & Printed Document Recognizer"
38
+ description = "Transcribe Arabic documents using a fine-tuned Nougat model."
39
 
40
+ interface = gr.Interface(
41
+ fn=predict,
42
+ inputs=gr.Image(type="pil", label="Upload an Arabic Document"),
43
+ outputs=gr.Textbox(label="Transcription", lines=15),
44
+ title=title,
45
+ description=description,
46
+ examples=[["example_1.jpg"], ["example_2.jpg"]]
 
 
 
 
 
 
 
 
 
 
47
  )
48
 
 
49
  if __name__ == "__main__":
50
+ interface.launch()