Update core/graph_mamba.py
Browse files- core/graph_mamba.py +277 -209
core/graph_mamba.py
CHANGED
|
@@ -1,247 +1,315 @@
|
|
| 1 |
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
-
|
| 4 |
-
from .
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
def __init__(self, config):
|
| 12 |
super().__init__()
|
| 13 |
|
| 14 |
self.config = config
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
self.dropout = config['model']['dropout']
|
| 18 |
self.ordering_strategy = config['ordering']['strategy']
|
| 19 |
|
| 20 |
-
# Input projection
|
| 21 |
-
self.input_proj =
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
self.
|
| 25 |
-
self.pos_embed = nn.Linear(11, self.d_model)
|
| 26 |
|
| 27 |
-
# Mamba layers
|
| 28 |
self.mamba_layers = nn.ModuleList([
|
| 29 |
-
MambaBlock(
|
| 30 |
-
d_model=self.d_model,
|
| 31 |
-
d_state=config['model']['d_state'],
|
| 32 |
-
d_conv=config['model']['d_conv'],
|
| 33 |
-
expand=config['model']['expand']
|
| 34 |
-
)
|
| 35 |
-
for _ in range(self.n_layers)
|
| 36 |
])
|
| 37 |
|
| 38 |
# Layer norms
|
| 39 |
self.layer_norms = nn.ModuleList([
|
| 40 |
-
nn.LayerNorm(self.
|
| 41 |
-
for _ in range(self.n_layers)
|
| 42 |
])
|
| 43 |
|
| 44 |
-
#
|
| 45 |
-
self.
|
| 46 |
-
|
| 47 |
-
# Graph sequencer
|
| 48 |
-
self.sequencer = GraphSequencer()
|
| 49 |
|
| 50 |
-
#
|
| 51 |
self.classifier = None
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
nn.Dropout(self.dropout * 0.5)
|
| 64 |
-
).to(device)
|
| 65 |
-
|
| 66 |
-
def _init_classifier(self, num_classes, device):
|
| 67 |
-
"""Initialize classifier dynamically"""
|
| 68 |
-
if self.classifier is None:
|
| 69 |
-
self.classifier = nn.Sequential(
|
| 70 |
-
nn.Linear(self.d_model, self.d_model // 2),
|
| 71 |
-
nn.LayerNorm(self.d_model // 2),
|
| 72 |
-
nn.ReLU(),
|
| 73 |
-
nn.Dropout(self.dropout),
|
| 74 |
-
nn.Linear(self.d_model // 2, num_classes)
|
| 75 |
-
).to(device)
|
| 76 |
-
|
| 77 |
-
def forward(self, x, edge_index, batch=None):
|
| 78 |
-
"""
|
| 79 |
-
Forward pass with training optimizations
|
| 80 |
-
"""
|
| 81 |
-
num_nodes = x.size(0)
|
| 82 |
-
input_dim = x.size(1)
|
| 83 |
-
device = x.device
|
| 84 |
-
|
| 85 |
-
# Move all components to correct device
|
| 86 |
-
self.to(device)
|
| 87 |
-
|
| 88 |
-
# Initialize input projection if needed
|
| 89 |
-
self._init_input_proj(input_dim, device)
|
| 90 |
-
|
| 91 |
-
# Project input features
|
| 92 |
-
h = self.input_proj(x) # (num_nodes, d_model)
|
| 93 |
-
|
| 94 |
-
if batch is None:
|
| 95 |
-
# Single graph processing
|
| 96 |
-
h = self._process_single_graph(h, edge_index)
|
| 97 |
-
else:
|
| 98 |
-
# Batch processing
|
| 99 |
-
h = self._process_batch(h, edge_index, batch)
|
| 100 |
-
|
| 101 |
-
return h
|
| 102 |
|
| 103 |
-
def
|
| 104 |
-
"""
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
# Ensure edge_index is on correct device
|
| 109 |
-
edge_index = edge_index.to(device)
|
| 110 |
-
|
| 111 |
-
# Cache key for ordering
|
| 112 |
-
cache_key = f"{self.ordering_strategy}_{num_nodes}_{edge_index.shape[1]}"
|
| 113 |
-
|
| 114 |
-
# Get ordering (with caching during training)
|
| 115 |
-
if cache_key not in self._cache or not self.training:
|
| 116 |
-
if self.ordering_strategy == "spectral":
|
| 117 |
-
order = self.sequencer.spectral_ordering(edge_index, num_nodes)
|
| 118 |
-
elif self.ordering_strategy == "degree":
|
| 119 |
-
order = self.sequencer.degree_ordering(edge_index, num_nodes)
|
| 120 |
-
elif self.ordering_strategy == "community":
|
| 121 |
-
order = self.sequencer.community_ordering(edge_index, num_nodes)
|
| 122 |
-
else: # default to BFS
|
| 123 |
-
order = self.sequencer.bfs_ordering(edge_index, num_nodes)
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
-
# Add
|
| 134 |
-
|
| 135 |
-
seq_pos = seq_pos.to(device)
|
| 136 |
-
distances = distances.to(device)
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
| 140 |
|
| 141 |
-
#
|
| 142 |
-
|
| 143 |
-
h_ordered =
|
| 144 |
|
| 145 |
-
|
| 146 |
-
for i, (mamba, ln) in enumerate(zip(self.mamba_layers, self.layer_norms)):
|
| 147 |
-
# Pre-norm residual connection with gradient scaling
|
| 148 |
residual = h_ordered
|
| 149 |
h_ordered = ln(h_ordered)
|
| 150 |
-
h_ordered = mamba(h_ordered)
|
| 151 |
-
h_ordered = residual + self.dropout_layer(h_ordered)
|
| 152 |
-
|
| 153 |
-
# Layer-wise learning rate scaling
|
| 154 |
-
if self.training:
|
| 155 |
-
h_ordered = h_ordered * (1.0 - 0.1 * i / self.n_layers)
|
| 156 |
|
| 157 |
# Restore original order
|
| 158 |
-
|
|
|
|
| 159 |
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
|
|
|
| 165 |
|
| 166 |
-
def
|
| 167 |
-
"""
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
-
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
node_map = torch.zeros(h.size(0), dtype=torch.long, device=device)
|
| 188 |
-
node_map[node_indices] = torch.arange(batch_h.size(0), device=device)
|
| 189 |
-
batch_edges_local = node_map[batch_edges]
|
| 190 |
-
else:
|
| 191 |
-
# Empty graph
|
| 192 |
-
batch_edges_local = torch.empty((2, 0), dtype=torch.long, device=device)
|
| 193 |
-
|
| 194 |
-
# Process subgraph
|
| 195 |
-
batch_output = self._process_single_graph(batch_h, batch_edges_local)
|
| 196 |
-
outputs.append(batch_output)
|
| 197 |
-
|
| 198 |
-
# Reconstruct full batch
|
| 199 |
-
h_out = torch.zeros_like(h)
|
| 200 |
-
for b, output in enumerate(outputs):
|
| 201 |
-
mask = batch == b
|
| 202 |
-
h_out[mask] = output
|
| 203 |
-
|
| 204 |
-
return h_out
|
| 205 |
|
| 206 |
-
def
|
| 207 |
-
"""
|
| 208 |
-
if
|
| 209 |
-
|
| 210 |
-
mean_pool = h.mean(dim=0, keepdim=True)
|
| 211 |
-
max_pool = h.max(dim=0)[0].unsqueeze(0)
|
| 212 |
-
|
| 213 |
-
# Attention pooling
|
| 214 |
-
attn_weights = torch.softmax(h.sum(dim=1), dim=0)
|
| 215 |
-
attn_pool = (h * attn_weights.unsqueeze(1)).sum(dim=0, keepdim=True)
|
| 216 |
-
|
| 217 |
-
return torch.cat([mean_pool, max_pool, attn_pool], dim=1)
|
| 218 |
-
else:
|
| 219 |
-
# Batched graphs
|
| 220 |
-
device = h.device
|
| 221 |
-
batch = batch.to(device)
|
| 222 |
-
batch_size = batch.max().item() + 1
|
| 223 |
-
|
| 224 |
-
graph_embeddings = []
|
| 225 |
-
for b in range(batch_size):
|
| 226 |
-
mask = batch == b
|
| 227 |
-
if mask.any():
|
| 228 |
-
batch_h = h[mask]
|
| 229 |
-
|
| 230 |
-
# Multiple pooling for this graph
|
| 231 |
-
mean_pool = batch_h.mean(dim=0)
|
| 232 |
-
max_pool = batch_h.max(dim=0)[0]
|
| 233 |
-
|
| 234 |
-
attn_weights = torch.softmax(batch_h.sum(dim=1), dim=0)
|
| 235 |
-
attn_pool = (batch_h * attn_weights.unsqueeze(1)).sum(dim=0)
|
| 236 |
-
|
| 237 |
-
graph_emb = torch.cat([mean_pool, max_pool, attn_pool])
|
| 238 |
-
graph_embeddings.append(graph_emb)
|
| 239 |
-
else:
|
| 240 |
-
# Empty graph
|
| 241 |
-
graph_embeddings.append(torch.zeros(h.size(1) * 3, device=device))
|
| 242 |
-
|
| 243 |
-
return torch.stack(graph_embeddings)
|
| 244 |
|
| 245 |
-
def
|
| 246 |
-
"""
|
| 247 |
-
self.
|
|
|
|
| 1 |
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from torch_geometric.utils import degree, to_dense_batch
|
| 5 |
+
import networkx as nx
|
| 6 |
+
import numpy as np
|
| 7 |
+
import logging
|
| 8 |
|
| 9 |
+
logger = logging.getLogger(__name__)
|
| 10 |
+
|
| 11 |
+
class MambaBlock(nn.Module):
|
| 12 |
+
"""Enhanced Mamba block with optimizations"""
|
| 13 |
+
def __init__(self, d_model, d_state=16, d_conv=4, expand=2):
|
| 14 |
+
super().__init__()
|
| 15 |
+
self.d_model = d_model
|
| 16 |
+
self.d_inner = int(expand * d_model)
|
| 17 |
+
self.d_state = d_state
|
| 18 |
+
|
| 19 |
+
self.in_proj = nn.Linear(d_model, self.d_inner * 2, bias=False)
|
| 20 |
+
self.conv1d = nn.Conv1d(self.d_inner, self.d_inner, d_conv, groups=self.d_inner, padding=d_conv-1)
|
| 21 |
+
self.act = nn.SiLU()
|
| 22 |
+
self.x_proj = nn.Linear(self.d_inner, d_state * 2 + 1, bias=False)
|
| 23 |
+
self.dt_proj = nn.Linear(1, self.d_inner, bias=True)
|
| 24 |
+
|
| 25 |
+
A = torch.arange(1, d_state + 1, dtype=torch.float32).unsqueeze(0).repeat(self.d_inner, 1)
|
| 26 |
+
self.A_log = nn.Parameter(torch.log(A))
|
| 27 |
+
self.D = nn.Parameter(torch.ones(self.d_inner))
|
| 28 |
+
self.out_proj = nn.Linear(self.d_inner, d_model, bias=False)
|
| 29 |
+
|
| 30 |
+
def forward(self, x):
|
| 31 |
+
batch, length, d_model = x.shape
|
| 32 |
+
xz = self.in_proj(x)
|
| 33 |
+
x, z = xz.chunk(2, dim=-1)
|
| 34 |
+
|
| 35 |
+
x = x.transpose(1, 2)
|
| 36 |
+
x = self.conv1d(x)[:, :, :length]
|
| 37 |
+
x = x.transpose(1, 2)
|
| 38 |
+
x = self.act(x)
|
| 39 |
+
|
| 40 |
+
y = self.selective_scan(x)
|
| 41 |
+
y = y * self.act(z)
|
| 42 |
+
return self.out_proj(y)
|
| 43 |
+
|
| 44 |
+
def selective_scan(self, x):
|
| 45 |
+
batch, length, d_inner = x.shape
|
| 46 |
+
deltaBC = self.x_proj(x)
|
| 47 |
+
delta, B, C = torch.split(deltaBC, [1, self.d_state, self.d_state], dim=-1)
|
| 48 |
+
delta = F.softplus(self.dt_proj(delta))
|
| 49 |
+
|
| 50 |
+
deltaA = torch.exp(delta.unsqueeze(-1) * (-torch.exp(self.A_log)))
|
| 51 |
+
deltaB = delta.unsqueeze(-1) * B.unsqueeze(2)
|
| 52 |
+
|
| 53 |
+
states = torch.zeros(batch, d_inner, self.d_state, device=x.device)
|
| 54 |
+
outputs = []
|
| 55 |
+
|
| 56 |
+
for i in range(length):
|
| 57 |
+
states = deltaA[:, i] * states + deltaB[:, i] * x[:, i, :, None]
|
| 58 |
+
y = (states @ C[:, i, :, None]).squeeze(-1) + self.D * x[:, i]
|
| 59 |
+
outputs.append(y)
|
| 60 |
+
|
| 61 |
+
return torch.stack(outputs, dim=1)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class EnhancedGraphOrdering:
|
| 65 |
+
"""Advanced graph ordering strategies"""
|
| 66 |
|
| 67 |
+
@staticmethod
|
| 68 |
+
def pagerank_ordering(edge_index, num_nodes):
|
| 69 |
+
"""PageRank-based ordering preserving importance"""
|
| 70 |
+
try:
|
| 71 |
+
G = nx.Graph()
|
| 72 |
+
if edge_index.size(1) > 0:
|
| 73 |
+
edges = edge_index.t().cpu().numpy()
|
| 74 |
+
G.add_edges_from(edges)
|
| 75 |
+
G.add_nodes_from(range(num_nodes))
|
| 76 |
+
|
| 77 |
+
pagerank = nx.pagerank(G, max_iter=50)
|
| 78 |
+
order = sorted(range(num_nodes), key=lambda x: pagerank.get(x, 0), reverse=True)
|
| 79 |
+
return torch.tensor(order, dtype=torch.long)
|
| 80 |
+
except:
|
| 81 |
+
return torch.arange(num_nodes, dtype=torch.long)
|
| 82 |
+
|
| 83 |
+
@staticmethod
|
| 84 |
+
def community_aware_ordering(edge_index, num_nodes):
|
| 85 |
+
"""Community-preserving ordering"""
|
| 86 |
+
try:
|
| 87 |
+
G = nx.Graph()
|
| 88 |
+
if edge_index.size(1) > 0:
|
| 89 |
+
edges = edge_index.t().cpu().numpy()
|
| 90 |
+
G.add_edges_from(edges)
|
| 91 |
+
G.add_nodes_from(range(num_nodes))
|
| 92 |
+
|
| 93 |
+
communities = nx.community.greedy_modularity_communities(G)
|
| 94 |
+
order = []
|
| 95 |
+
for community in communities:
|
| 96 |
+
# Sort within community by degree
|
| 97 |
+
community_list = list(community)
|
| 98 |
+
degrees = {node: G.degree(node) for node in community_list}
|
| 99 |
+
community_sorted = sorted(community_list, key=lambda x: degrees[x], reverse=True)
|
| 100 |
+
order.extend(community_sorted)
|
| 101 |
+
|
| 102 |
+
return torch.tensor(order, dtype=torch.long)
|
| 103 |
+
except:
|
| 104 |
+
return torch.arange(num_nodes, dtype=torch.long)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
class StructuralEncoding(nn.Module):
|
| 108 |
+
"""Multi-faceted structural encoding"""
|
| 109 |
+
def __init__(self, d_model, max_nodes=5000, max_degree=100):
|
| 110 |
+
super().__init__()
|
| 111 |
+
self.pos_encoding = nn.Embedding(max_nodes, d_model)
|
| 112 |
+
self.degree_encoding = nn.Embedding(max_degree, d_model)
|
| 113 |
+
self.centrality_proj = nn.Linear(1, d_model)
|
| 114 |
+
self.layer_norm = nn.LayerNorm(d_model)
|
| 115 |
+
|
| 116 |
+
def forward(self, x, edge_index, node_order=None):
|
| 117 |
+
num_nodes = x.size(0)
|
| 118 |
+
device = x.device
|
| 119 |
+
|
| 120 |
+
# Position encoding
|
| 121 |
+
positions = torch.arange(num_nodes, device=device).clamp(max=self.pos_encoding.num_embeddings-1)
|
| 122 |
+
pos_emb = self.pos_encoding(positions)
|
| 123 |
+
|
| 124 |
+
# Degree encoding
|
| 125 |
+
degrees = degree(edge_index[0], num_nodes).long().clamp(max=self.degree_encoding.num_embeddings-1)
|
| 126 |
+
degree_emb = self.degree_encoding(degrees)
|
| 127 |
+
|
| 128 |
+
# Simple centrality (normalized degree)
|
| 129 |
+
centrality = degrees.float() / max(degrees.max().item(), 1.0)
|
| 130 |
+
centrality_emb = self.centrality_proj(centrality.unsqueeze(-1))
|
| 131 |
+
|
| 132 |
+
# Combine encodings
|
| 133 |
+
structural_emb = pos_emb + degree_emb + centrality_emb
|
| 134 |
+
return self.layer_norm(x + structural_emb)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
class MultiScaleGraphMamba(nn.Module):
|
| 138 |
+
"""Multi-scale processing with different orderings"""
|
| 139 |
+
def __init__(self, d_model, n_layers=3):
|
| 140 |
+
super().__init__()
|
| 141 |
+
self.d_model = d_model
|
| 142 |
+
|
| 143 |
+
# Different scale processors
|
| 144 |
+
self.local_mamba = nn.ModuleList([MambaBlock(d_model) for _ in range(n_layers//2)])
|
| 145 |
+
self.global_mamba = nn.ModuleList([MambaBlock(d_model) for _ in range(n_layers//2)])
|
| 146 |
+
|
| 147 |
+
# Fusion layers
|
| 148 |
+
self.scale_fusion = nn.Linear(d_model * 2, d_model)
|
| 149 |
+
self.layer_norm = nn.LayerNorm(d_model)
|
| 150 |
+
|
| 151 |
+
def forward(self, x, edge_index):
|
| 152 |
+
num_nodes = x.size(0)
|
| 153 |
+
|
| 154 |
+
# Different orderings
|
| 155 |
+
local_order = torch.arange(num_nodes) # BFS equivalent
|
| 156 |
+
global_order = EnhancedGraphOrdering.pagerank_ordering(edge_index, num_nodes)
|
| 157 |
+
|
| 158 |
+
# Process local scale
|
| 159 |
+
x_local = x[local_order].unsqueeze(0)
|
| 160 |
+
for layer in self.local_mamba:
|
| 161 |
+
x_local = x_local + layer(x_local)
|
| 162 |
+
x_local = x_local.squeeze(0)
|
| 163 |
+
|
| 164 |
+
# Process global scale
|
| 165 |
+
x_global = x[global_order].unsqueeze(0)
|
| 166 |
+
for layer in self.global_mamba:
|
| 167 |
+
x_global = x_global + layer(x_global)
|
| 168 |
+
x_global = x_global.squeeze(0)
|
| 169 |
+
|
| 170 |
+
# Restore original order
|
| 171 |
+
local_restored = torch.zeros_like(x_local)
|
| 172 |
+
global_restored = torch.zeros_like(x_global)
|
| 173 |
+
|
| 174 |
+
local_restored[local_order] = x_local
|
| 175 |
+
global_restored[global_order] = x_global
|
| 176 |
+
|
| 177 |
+
# Fuse scales
|
| 178 |
+
fused = torch.cat([local_restored, global_restored], dim=-1)
|
| 179 |
+
return self.layer_norm(self.scale_fusion(fused))
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
class GraphMamba(nn.Module):
|
| 183 |
+
"""Enhanced GraphMamba with accuracy improvements"""
|
| 184 |
def __init__(self, config):
|
| 185 |
super().__init__()
|
| 186 |
|
| 187 |
self.config = config
|
| 188 |
+
d_model = config['model']['d_model']
|
| 189 |
+
n_layers = config['model']['n_layers']
|
|
|
|
| 190 |
self.ordering_strategy = config['ordering']['strategy']
|
| 191 |
|
| 192 |
+
# Input projection
|
| 193 |
+
self.input_proj = nn.Linear(config.get('input_dim', 1433), d_model)
|
| 194 |
+
|
| 195 |
+
# Structural encoding
|
| 196 |
+
self.structural_encoding = StructuralEncoding(d_model)
|
| 197 |
|
| 198 |
+
# Multi-scale processing
|
| 199 |
+
self.multi_scale = MultiScaleGraphMamba(d_model, n_layers)
|
|
|
|
| 200 |
|
| 201 |
+
# Additional Mamba layers
|
| 202 |
self.mamba_layers = nn.ModuleList([
|
| 203 |
+
MambaBlock(d_model) for _ in range(max(1, n_layers - 2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
])
|
| 205 |
|
| 206 |
# Layer norms
|
| 207 |
self.layer_norms = nn.ModuleList([
|
| 208 |
+
nn.LayerNorm(d_model) for _ in range(len(self.mamba_layers))
|
|
|
|
| 209 |
])
|
| 210 |
|
| 211 |
+
# Output projection
|
| 212 |
+
self.output_proj = nn.Linear(d_model, d_model)
|
| 213 |
+
self.dropout = nn.Dropout(config['model']['dropout'])
|
|
|
|
|
|
|
| 214 |
|
| 215 |
+
# For node classification
|
| 216 |
self.classifier = None
|
| 217 |
|
| 218 |
+
def _get_ordering(self, edge_index, num_nodes):
|
| 219 |
+
"""Get node ordering based on strategy"""
|
| 220 |
+
if self.ordering_strategy == 'pagerank':
|
| 221 |
+
return EnhancedGraphOrdering.pagerank_ordering(edge_index, num_nodes)
|
| 222 |
+
elif self.ordering_strategy == 'community':
|
| 223 |
+
return EnhancedGraphOrdering.community_aware_ordering(edge_index, num_nodes)
|
| 224 |
+
elif self.ordering_strategy == 'spectral':
|
| 225 |
+
return self._spectral_ordering(edge_index, num_nodes)
|
| 226 |
+
else: # BFS default
|
| 227 |
+
return torch.arange(num_nodes, dtype=torch.long)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
|
| 229 |
+
def _spectral_ordering(self, edge_index, num_nodes):
|
| 230 |
+
"""Spectral ordering with fallback"""
|
| 231 |
+
try:
|
| 232 |
+
from torch_geometric.utils import get_laplacian
|
| 233 |
+
edge_index_lap, edge_weight = get_laplacian(edge_index, num_nodes=num_nodes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
+
# Simple degree-based approximation
|
| 236 |
+
degrees = degree(edge_index[0], num_nodes)
|
| 237 |
+
return torch.argsort(degrees, descending=True)
|
| 238 |
+
except:
|
| 239 |
+
return torch.arange(num_nodes, dtype=torch.long)
|
| 240 |
+
|
| 241 |
+
def forward(self, x, edge_index, batch=None):
|
| 242 |
+
"""Enhanced forward pass"""
|
| 243 |
+
# Input projection
|
| 244 |
+
h = self.input_proj(x)
|
| 245 |
|
| 246 |
+
# Add structural information
|
| 247 |
+
h = self.structural_encoding(h, edge_index)
|
|
|
|
|
|
|
| 248 |
|
| 249 |
+
# Multi-scale processing
|
| 250 |
+
h = self.multi_scale(h, edge_index)
|
| 251 |
|
| 252 |
+
# Additional sequential processing
|
| 253 |
+
order = self._get_ordering(edge_index, h.size(0))
|
| 254 |
+
h_ordered = h[order].unsqueeze(0)
|
| 255 |
|
| 256 |
+
for mamba, ln in zip(self.mamba_layers, self.layer_norms):
|
|
|
|
|
|
|
| 257 |
residual = h_ordered
|
| 258 |
h_ordered = ln(h_ordered)
|
| 259 |
+
h_ordered = residual + self.dropout(mamba(h_ordered))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
|
| 261 |
# Restore original order
|
| 262 |
+
h_restored = torch.zeros_like(h_ordered.squeeze(0))
|
| 263 |
+
h_restored[order] = h_ordered.squeeze(0)
|
| 264 |
|
| 265 |
+
return self.output_proj(h_restored)
|
| 266 |
+
|
| 267 |
+
def _init_classifier(self, num_classes, device):
|
| 268 |
+
"""Initialize classifier head"""
|
| 269 |
+
if self.classifier is None:
|
| 270 |
+
self.classifier = nn.Linear(self.config['model']['d_model'], num_classes).to(device)
|
| 271 |
|
| 272 |
+
def get_performance_stats(self):
|
| 273 |
+
"""Get model performance statistics"""
|
| 274 |
+
total_params = sum(p.numel() for p in self.parameters())
|
| 275 |
+
return {
|
| 276 |
+
'total_params': total_params,
|
| 277 |
+
'device': next(self.parameters()).device,
|
| 278 |
+
'dtype': next(self.parameters()).dtype,
|
| 279 |
+
'ordering_strategy': self.ordering_strategy
|
| 280 |
+
}
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
class HybridGraphMamba(nn.Module):
|
| 284 |
+
"""Hybrid approach with minimal GNN overhead"""
|
| 285 |
+
def __init__(self, config):
|
| 286 |
+
super().__init__()
|
| 287 |
+
from torch_geometric.nn import GCNConv
|
| 288 |
|
| 289 |
+
d_model = config['model']['d_model']
|
| 290 |
+
self.graph_mamba = GraphMamba(config)
|
| 291 |
+
self.gcn = GCNConv(d_model, d_model)
|
| 292 |
+
self.gate = nn.Linear(d_model, 1)
|
| 293 |
+
self.fusion = nn.Linear(d_model * 2, d_model)
|
| 294 |
|
| 295 |
+
def forward(self, x, edge_index, batch=None):
|
| 296 |
+
# Get both representations
|
| 297 |
+
mamba_out = self.graph_mamba(x, edge_index, batch)
|
| 298 |
+
gcn_out = self.gcn(mamba_out, edge_index)
|
| 299 |
+
|
| 300 |
+
# Learned fusion
|
| 301 |
+
gate_weight = torch.sigmoid(self.gate(mamba_out))
|
| 302 |
+
weighted = gate_weight * mamba_out + (1 - gate_weight) * gcn_out
|
| 303 |
+
|
| 304 |
+
# Final fusion
|
| 305 |
+
combined = torch.cat([mamba_out, weighted], dim=-1)
|
| 306 |
+
return self.fusion(combined)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
|
| 308 |
+
def _init_classifier(self, num_classes, device):
|
| 309 |
+
"""Initialize classifier for hybrid model"""
|
| 310 |
+
if not hasattr(self, 'classifier') or self.classifier is None:
|
| 311 |
+
self.classifier = nn.Linear(self.config['model']['d_model'], num_classes).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
|
| 313 |
+
def get_performance_stats(self):
|
| 314 |
+
"""Get hybrid model stats"""
|
| 315 |
+
return self.graph_mamba.get_performance_stats()
|