Update core/graph_mamba.py
Browse files- core/graph_mamba.py +358 -0
core/graph_mamba.py
CHANGED
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch_geometric.utils import degree, to_dense_adj
|
5 |
+
from torch_geometric.nn import GCNConv
|
6 |
+
import math
|
7 |
+
import logging
|
8 |
+
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
class CognitiveMomentumEngine(nn.Module):
|
12 |
+
"""Core cognitive momentum system from the document"""
|
13 |
+
def __init__(self, d_model):
|
14 |
+
super().__init__()
|
15 |
+
self.d_model = d_model
|
16 |
+
|
17 |
+
# Momentum tracking
|
18 |
+
self.register_buffer('momentum_vectors', torch.zeros(d_model))
|
19 |
+
self.register_buffer('cognitive_mass', torch.ones(d_model))
|
20 |
+
self.register_buffer('kinetic_energy', torch.zeros(d_model))
|
21 |
+
self.register_buffer('potential_energy', torch.zeros(d_model))
|
22 |
+
|
23 |
+
# Field interactions
|
24 |
+
self.attraction_projection = nn.Linear(d_model, d_model)
|
25 |
+
self.repulsion_projection = nn.Linear(d_model, d_model)
|
26 |
+
|
27 |
+
# Crystallization threshold
|
28 |
+
self.crystallization_threshold = 0.1
|
29 |
+
self.memory_decay = 0.99
|
30 |
+
|
31 |
+
def update_momentum(self, concept_features, force, dt=0.1):
|
32 |
+
"""Apply cognitive momentum physics"""
|
33 |
+
# F = ma => a = F/m
|
34 |
+
acceleration = force / (self.cognitive_mass + 1e-8)
|
35 |
+
|
36 |
+
# Update velocity: v = v₀ + at
|
37 |
+
current_velocity = self.momentum_vectors / (self.cognitive_mass + 1e-8)
|
38 |
+
new_velocity = current_velocity + acceleration * dt
|
39 |
+
|
40 |
+
# Update momentum: p = mv
|
41 |
+
self.momentum_vectors = self.cognitive_mass * new_velocity
|
42 |
+
|
43 |
+
# Update energy
|
44 |
+
self.kinetic_energy = 0.5 * self.cognitive_mass * (new_velocity ** 2)
|
45 |
+
|
46 |
+
return self.momentum_vectors
|
47 |
+
|
48 |
+
def crystallize_knowledge(self):
|
49 |
+
"""Compress low-momentum concepts"""
|
50 |
+
low_momentum_mask = torch.abs(self.momentum_vectors) < self.crystallization_threshold
|
51 |
+
|
52 |
+
# Compress crystallized knowledge
|
53 |
+
crystallized_pattern = self.momentum_vectors[low_momentum_mask].mean()
|
54 |
+
|
55 |
+
# Reset crystallized components
|
56 |
+
self.momentum_vectors[low_momentum_mask] = crystallized_pattern * 0.1
|
57 |
+
|
58 |
+
return crystallized_pattern
|
59 |
+
|
60 |
+
def forward(self, x):
|
61 |
+
"""Apply momentum to features"""
|
62 |
+
if x.dim() == 2:
|
63 |
+
x = x.unsqueeze(0)
|
64 |
+
batch_size, seq_len, d_model = x.shape
|
65 |
+
|
66 |
+
# Compute forces from feature interactions
|
67 |
+
attraction_force = self.attraction_projection(x)
|
68 |
+
repulsion_force = self.repulsion_projection(x)
|
69 |
+
|
70 |
+
# Net force
|
71 |
+
net_force = attraction_force - repulsion_force * 0.1
|
72 |
+
|
73 |
+
# Simple momentum application
|
74 |
+
momentum_enhanced = x + net_force * 0.1
|
75 |
+
|
76 |
+
# Crystallize periodically
|
77 |
+
if torch.rand(1) < 0.1:
|
78 |
+
self.crystallize_knowledge()
|
79 |
+
|
80 |
+
return momentum_enhanced
|
81 |
+
|
82 |
+
class AstrocyteLayer(nn.Module):
|
83 |
+
"""Multi-timescale processing with momentum"""
|
84 |
+
def __init__(self, d_model, astrocyte_ratio=2.0):
|
85 |
+
super().__init__()
|
86 |
+
self.d_model = d_model
|
87 |
+
self.d_astrocyte = int(d_model * astrocyte_ratio)
|
88 |
+
|
89 |
+
# Fast neuronal processing
|
90 |
+
self.neuron_fast = nn.Linear(d_model, d_model)
|
91 |
+
self.neuron_dropout = nn.Dropout(0.1)
|
92 |
+
|
93 |
+
# Slow astrocyte processing
|
94 |
+
self.astrocyte_slow = nn.Linear(d_model, self.d_astrocyte)
|
95 |
+
self.astrocyte_integration = nn.Linear(self.d_astrocyte, d_model)
|
96 |
+
self.astrocyte_dropout = nn.Dropout(0.1)
|
97 |
+
|
98 |
+
# Cognitive momentum
|
99 |
+
self.momentum_engine = CognitiveMomentumEngine(d_model)
|
100 |
+
|
101 |
+
# Multi-timescale gates
|
102 |
+
self.fast_gate = nn.Linear(d_model, d_model)
|
103 |
+
self.slow_gate = nn.Linear(self.d_astrocyte, d_model)
|
104 |
+
|
105 |
+
# Memory for slow dynamics
|
106 |
+
self.register_buffer('astrocyte_memory', torch.zeros(1, self.d_astrocyte))
|
107 |
+
self.memory_decay = 0.9
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
batch_size = x.size(0) if x.dim() == 3 else 1
|
111 |
+
if x.dim() == 2:
|
112 |
+
x = x.unsqueeze(0)
|
113 |
+
|
114 |
+
if self.astrocyte_memory.size(0) != batch_size:
|
115 |
+
self.astrocyte_memory = torch.zeros(batch_size, self.d_astrocyte, device=x.device)
|
116 |
+
|
117 |
+
# Apply cognitive momentum
|
118 |
+
x_momentum = self.momentum_engine(x)
|
119 |
+
|
120 |
+
# Fast neuronal response
|
121 |
+
fast_out = self.neuron_dropout(torch.tanh(self.neuron_fast(x_momentum)))
|
122 |
+
|
123 |
+
# Slow astrocyte integration
|
124 |
+
astrocyte_input = self.astrocyte_slow(x_momentum)
|
125 |
+
self.astrocyte_memory = self.memory_decay * self.astrocyte_memory + (1 - self.memory_decay) * astrocyte_input.mean(dim=1)
|
126 |
+
slow_out = self.astrocyte_dropout(torch.tanh(self.astrocyte_integration(self.astrocyte_memory))).unsqueeze(1).expand(-1, x.size(1), -1)
|
127 |
+
|
128 |
+
# Multi-timescale gating
|
129 |
+
fast_gate = torch.sigmoid(self.fast_gate(x_momentum))
|
130 |
+
slow_gate = torch.sigmoid(self.slow_gate(self.astrocyte_memory)).unsqueeze(1).expand(-1, x.size(1), -1)
|
131 |
+
|
132 |
+
# Combine with momentum
|
133 |
+
output = fast_gate * fast_out + slow_gate * slow_out
|
134 |
+
|
135 |
+
return output.squeeze(0) if output.size(0) == 1 else output
|
136 |
+
|
137 |
+
class PhysicsInformedMamba(nn.Module):
|
138 |
+
"""Mamba with physics constraints and momentum"""
|
139 |
+
def __init__(self, d_model, d_state=8):
|
140 |
+
super().__init__()
|
141 |
+
self.d_model = d_model
|
142 |
+
self.d_inner = d_model * 2
|
143 |
+
self.d_state = d_state
|
144 |
+
|
145 |
+
self.in_proj = nn.Linear(d_model, self.d_inner * 2, bias=False)
|
146 |
+
self.conv1d = nn.Conv1d(self.d_inner, self.d_inner, 4, groups=self.d_inner, padding=3)
|
147 |
+
self.x_proj = nn.Linear(self.d_inner, d_state * 2 + 1, bias=False)
|
148 |
+
self.dt_proj = nn.Linear(1, self.d_inner, bias=True)
|
149 |
+
|
150 |
+
# Physics constraints
|
151 |
+
A = torch.arange(1, d_state + 1, dtype=torch.float32).unsqueeze(0).repeat(self.d_inner, 1)
|
152 |
+
self.A_log = nn.Parameter(torch.log(A))
|
153 |
+
self.D = nn.Parameter(torch.ones(self.d_inner))
|
154 |
+
self.out_proj = nn.Linear(self.d_inner, d_model, bias=False)
|
155 |
+
|
156 |
+
# Energy conservation
|
157 |
+
self.energy_projection = nn.Linear(d_model, d_model)
|
158 |
+
|
159 |
+
def forward(self, x):
|
160 |
+
if x.dim() == 2:
|
161 |
+
x = x.unsqueeze(0)
|
162 |
+
|
163 |
+
batch, length, _ = x.shape
|
164 |
+
|
165 |
+
# Energy conservation
|
166 |
+
total_energy = x.norm(dim=-1, keepdim=True)
|
167 |
+
|
168 |
+
xz = self.in_proj(x)
|
169 |
+
x_inner, z = xz.chunk(2, dim=-1)
|
170 |
+
|
171 |
+
# Convolution
|
172 |
+
x_inner = x_inner.transpose(1, 2)
|
173 |
+
x_inner = self.conv1d(x_inner)[:, :, :length]
|
174 |
+
x_inner = x_inner.transpose(1, 2)
|
175 |
+
x_inner = F.silu(x_inner)
|
176 |
+
|
177 |
+
# State space with physics
|
178 |
+
y = self.selective_scan(x_inner)
|
179 |
+
y = y * F.silu(z)
|
180 |
+
|
181 |
+
# Apply energy conservation
|
182 |
+
output = self.out_proj(y)
|
183 |
+
output_energy = output.norm(dim=-1, keepdim=True)
|
184 |
+
energy_scale = total_energy / (output_energy + 1e-8)
|
185 |
+
output = output * energy_scale
|
186 |
+
|
187 |
+
return output
|
188 |
+
|
189 |
+
def selective_scan(self, x):
|
190 |
+
batch, length, d_inner = x.shape
|
191 |
+
|
192 |
+
deltaBC = self.x_proj(x)
|
193 |
+
delta, B, C = torch.split(deltaBC, [1, self.d_state, self.d_state], dim=-1)
|
194 |
+
delta = F.softplus(self.dt_proj(delta))
|
195 |
+
|
196 |
+
deltaA = torch.exp(delta.unsqueeze(-1) * (-torch.exp(self.A_log)))
|
197 |
+
deltaB = delta.unsqueeze(-1) * B.unsqueeze(2)
|
198 |
+
|
199 |
+
states = torch.zeros(batch, d_inner, self.d_state, device=x.device)
|
200 |
+
outputs = []
|
201 |
+
|
202 |
+
for i in range(length):
|
203 |
+
states = deltaA[:, i] * states + deltaB[:, i] * x[:, i, :, None]
|
204 |
+
y = (states @ C[:, i, :, None]).squeeze(-1) + self.D * x[:, i]
|
205 |
+
outputs.append(y)
|
206 |
+
|
207 |
+
return torch.stack(outputs, dim=1)
|
208 |
+
|
209 |
+
class CognitiveMambaGraphMamba(nn.Module):
|
210 |
+
"""Revolutionary cognitive momentum architecture"""
|
211 |
+
def __init__(self, config):
|
212 |
+
super().__init__()
|
213 |
+
|
214 |
+
self.config = config
|
215 |
+
d_model = config['model']['d_model']
|
216 |
+
n_layers = config['model']['n_layers']
|
217 |
+
input_dim = config.get('input_dim', 1433)
|
218 |
+
|
219 |
+
# Input processing
|
220 |
+
self.input_proj = nn.Linear(input_dim, d_model)
|
221 |
+
self.input_norm = nn.LayerNorm(d_model)
|
222 |
+
|
223 |
+
# GCN backbone for graph structure
|
224 |
+
self.gcn_layers = nn.ModuleList([
|
225 |
+
GCNConv(d_model, d_model) for _ in range(n_layers)
|
226 |
+
])
|
227 |
+
|
228 |
+
# Revolutionary components
|
229 |
+
self.astrocyte_layers = nn.ModuleList([
|
230 |
+
AstrocyteLayer(d_model) for _ in range(n_layers)
|
231 |
+
])
|
232 |
+
|
233 |
+
self.physics_mamba = PhysicsInformedMamba(d_model)
|
234 |
+
|
235 |
+
# Global cognitive momentum
|
236 |
+
self.global_momentum = CognitiveMomentumEngine(d_model)
|
237 |
+
|
238 |
+
# Layer norms
|
239 |
+
self.norms = nn.ModuleList([
|
240 |
+
nn.LayerNorm(d_model) for _ in range(n_layers)
|
241 |
+
])
|
242 |
+
|
243 |
+
# Multi-path fusion
|
244 |
+
self.fusion_weights = nn.Parameter(torch.tensor([0.4, 0.3, 0.3])) # GCN, Astrocyte, Mamba
|
245 |
+
|
246 |
+
self.dropout = nn.Dropout(0.1)
|
247 |
+
self.classifier = None
|
248 |
+
|
249 |
+
def forward(self, x, edge_index, batch=None):
|
250 |
+
# Input processing
|
251 |
+
h = self.input_norm(self.input_proj(x))
|
252 |
+
|
253 |
+
# Multi-path processing with momentum
|
254 |
+
for i in range(len(self.gcn_layers)):
|
255 |
+
gcn = self.gcn_layers[i]
|
256 |
+
astrocyte = self.astrocyte_layers[i]
|
257 |
+
norm = self.norms[i]
|
258 |
+
# Path 1: GCN (graph structure)
|
259 |
+
h_gcn = F.relu(gcn(h, edge_index))
|
260 |
+
h_gcn = self.dropout(h_gcn)
|
261 |
+
|
262 |
+
# Path 2: Astrocyte (multi-timescale with momentum)
|
263 |
+
h_astrocyte = astrocyte(h.unsqueeze(0)).squeeze(0)
|
264 |
+
|
265 |
+
# Path 3: Physics-informed Mamba (sequential with physics)
|
266 |
+
h_mamba = self.physics_mamba(h.unsqueeze(0)).squeeze(0)
|
267 |
+
|
268 |
+
# Apply global cognitive momentum
|
269 |
+
h_combined = torch.stack([h_gcn, h_astrocyte, h_mamba], dim=0) # (3, nodes, features)
|
270 |
+
h_combined = h_combined.permute(1, 0, 2) # (nodes, 3, features)
|
271 |
+
h_momentum = self.global_momentum(h_combined.unsqueeze(0)).squeeze(0) # (nodes, 3, features)
|
272 |
+
h_momentum = h_momentum.mean(dim=1) # (nodes, features)
|
273 |
+
|
274 |
+
# Weighted fusion
|
275 |
+
weights = F.softmax(self.fusion_weights, dim=0)
|
276 |
+
h_fused = weights[0] * h_gcn + weights[1] * h_astrocyte + weights[2] * h_mamba + h_momentum * 0.1
|
277 |
+
|
278 |
+
# Residual + norm
|
279 |
+
h = norm(h + h_fused)
|
280 |
+
|
281 |
+
return h
|
282 |
+
|
283 |
+
def _init_classifier(self, num_classes, device):
|
284 |
+
if self.classifier is None:
|
285 |
+
self.classifier = nn.Sequential(
|
286 |
+
nn.Dropout(0.1),
|
287 |
+
nn.Linear(self.config['model']['d_model'], num_classes)
|
288 |
+
).to(device)
|
289 |
+
|
290 |
+
def get_performance_stats(self):
|
291 |
+
total_params = sum(p.numel() for p in self.parameters())
|
292 |
+
return {
|
293 |
+
'total_params': total_params,
|
294 |
+
'device': next(self.parameters()).device,
|
295 |
+
'dtype': next(self.parameters()).dtype,
|
296 |
+
'model_size': f"{total_params/1000:.1f}K parameters"
|
297 |
+
}
|
298 |
+
|
299 |
+
class LegacyGraphMamba(nn.Module):
|
300 |
+
"""Fallback simple version"""
|
301 |
+
def __init__(self, config):
|
302 |
+
super().__init__()
|
303 |
+
self.cognitive_mamba = CognitiveMambaGraphMamba(config)
|
304 |
+
self.config = config
|
305 |
+
self.classifier = None
|
306 |
+
|
307 |
+
def forward(self, x, edge_index, batch=None):
|
308 |
+
return self.cognitive_mamba(x, edge_index, batch)
|
309 |
+
|
310 |
+
def _init_classifier(self, num_classes, device):
|
311 |
+
self.classifier = nn.Sequential(
|
312 |
+
nn.Dropout(0.1),
|
313 |
+
nn.Linear(self.config['model']['d_model'], num_classes)
|
314 |
+
).to(device)
|
315 |
+
self.cognitive_mamba.classifier = self.classifier
|
316 |
+
return self.classifier
|
317 |
+
|
318 |
+
def get_performance_stats(self):
|
319 |
+
return self.cognitive_mamba.get_performance_stats()
|
320 |
+
|
321 |
+
def create_astrocyte_config():
|
322 |
+
"""Revolutionary cognitive momentum configuration"""
|
323 |
+
return {
|
324 |
+
'model': {
|
325 |
+
'd_model': 128,
|
326 |
+
'd_state': 8,
|
327 |
+
'd_conv': 4,
|
328 |
+
'expand': 2,
|
329 |
+
'n_layers': 4,
|
330 |
+
'dropout': 0.1
|
331 |
+
},
|
332 |
+
'data': {
|
333 |
+
'batch_size': 1,
|
334 |
+
'test_split': 0.2
|
335 |
+
},
|
336 |
+
'training': {
|
337 |
+
'learning_rate': 0.003,
|
338 |
+
'weight_decay': 0.001,
|
339 |
+
'epochs': 500,
|
340 |
+
'patience': 100,
|
341 |
+
'warmup_epochs': 25,
|
342 |
+
'min_lr': 1e-7,
|
343 |
+
'label_smoothing': 0.0,
|
344 |
+
'max_gap': 0.3
|
345 |
+
},
|
346 |
+
'ordering': {
|
347 |
+
'strategy': 'none',
|
348 |
+
'preserve_locality': True
|
349 |
+
},
|
350 |
+
'input_dim': 1433
|
351 |
+
}
|
352 |
+
|
353 |
+
# Aliases
|
354 |
+
AstrocyteGraphMamba = CognitiveMambaGraphMamba
|
355 |
+
GraphMamba = CognitiveMambaGraphMamba
|
356 |
+
HybridGraphMamba = LegacyGraphMamba
|
357 |
+
QuantumEnhancedGraphMamba = LegacyGraphMamba
|
358 |
+
create_regularized_config = create_astrocyte_config
|