Update utils/metrics.py
Browse files- utils/metrics.py +382 -176
utils/metrics.py
CHANGED
@@ -1,214 +1,420 @@
|
|
1 |
import torch
|
2 |
import torch.nn.functional as F
|
3 |
-
from
|
|
|
4 |
import numpy as np
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
@staticmethod
|
10 |
-
def
|
11 |
-
"""
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
21 |
try:
|
22 |
-
if
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
else:
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
return
|
31 |
|
32 |
@staticmethod
|
33 |
-
def
|
34 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
try:
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
@staticmethod
|
47 |
-
def
|
48 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
try:
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
return
|
62 |
|
63 |
@staticmethod
|
64 |
-
def
|
65 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
try:
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
else:
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
78 |
|
79 |
@staticmethod
|
80 |
-
def
|
81 |
-
"""
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
try:
|
85 |
-
|
86 |
-
#
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
metrics['loss'] = criterion(pred_masked, target_masked).item()
|
118 |
|
119 |
except Exception as e:
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
'f1_micro': 0.0,
|
125 |
-
'loss': float('inf'),
|
126 |
-
'error': str(e)
|
127 |
-
}
|
128 |
-
|
129 |
-
return metrics
|
130 |
|
131 |
@staticmethod
|
132 |
-
def
|
133 |
-
"""
|
134 |
-
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
try:
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
# Calculate loss
|
164 |
-
loss = criterion(pred, batch.y)
|
165 |
-
total_loss += loss.item()
|
166 |
-
num_batches += 1
|
167 |
-
|
168 |
-
if all_preds:
|
169 |
-
all_preds = torch.cat(all_preds, dim=0)
|
170 |
-
all_targets = torch.cat(all_targets, dim=0)
|
171 |
-
|
172 |
-
metrics = {
|
173 |
-
'accuracy': GraphMetrics.accuracy(all_preds, all_targets),
|
174 |
-
'f1_macro': GraphMetrics.f1_score_macro(all_preds, all_targets),
|
175 |
-
'f1_micro': GraphMetrics.f1_score_micro(all_preds, all_targets),
|
176 |
-
'loss': total_loss / max(num_batches, 1)
|
177 |
-
}
|
178 |
-
|
179 |
-
if detailed:
|
180 |
-
metrics['roc_auc'] = GraphMetrics.roc_auc(all_preds, all_targets)
|
181 |
-
metrics['classification_report'] = GraphMetrics.classification_report_dict(all_preds, all_targets)
|
182 |
-
else:
|
183 |
-
metrics = {'error': 'No predictions generated'}
|
184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
except Exception as e:
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
'error': str(e)
|
193 |
-
}
|
194 |
-
|
195 |
-
return metrics
|
196 |
|
197 |
@staticmethod
|
198 |
-
def
|
199 |
-
"""
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import torch.nn.functional as F
|
3 |
+
from torch_geometric.data import Data
|
4 |
+
from torch_geometric.transforms import Compose
|
5 |
import numpy as np
|
6 |
+
import logging
|
7 |
|
8 |
+
logger = logging.getLogger(__name__)
|
9 |
+
|
10 |
+
class GraphProcessor:
|
11 |
+
"""
|
12 |
+
Advanced data preprocessing utilities
|
13 |
+
Enterprise-grade with comprehensive validation
|
14 |
+
"""
|
15 |
|
16 |
@staticmethod
|
17 |
+
def normalize_features(x, method: str = 'l2'):
|
18 |
+
"""
|
19 |
+
Normalize node features with validation
|
20 |
+
|
21 |
+
Args:
|
22 |
+
x: Feature tensor
|
23 |
+
method: Normalization method ('l2', 'minmax', 'standard')
|
24 |
+
|
25 |
+
Returns:
|
26 |
+
Normalized feature tensor
|
27 |
+
"""
|
28 |
+
if not isinstance(x, torch.Tensor):
|
29 |
+
raise TypeError("x must be a torch.Tensor")
|
30 |
+
if x.dim() != 2:
|
31 |
+
raise ValueError("x must be a 2D tensor")
|
32 |
+
|
33 |
try:
|
34 |
+
if method == 'l2':
|
35 |
+
# L2 normalization with numerical stability
|
36 |
+
norms = torch.norm(x, p=2, dim=1, keepdim=True)
|
37 |
+
norms = torch.clamp(norms, min=1e-8) # Avoid division by zero
|
38 |
+
return x / norms
|
39 |
+
|
40 |
+
elif method == 'minmax':
|
41 |
+
# Min-max normalization
|
42 |
+
x_min = x.min(dim=0, keepdim=True)[0]
|
43 |
+
x_max = x.max(dim=0, keepdim=True)[0]
|
44 |
+
x_range = x_max - x_min
|
45 |
+
x_range = torch.clamp(x_range, min=1e-8) # Avoid division by zero
|
46 |
+
return (x - x_min) / x_range
|
47 |
+
|
48 |
+
elif method == 'standard':
|
49 |
+
# Standard normalization (z-score)
|
50 |
+
x_mean = x.mean(dim=0, keepdim=True)
|
51 |
+
x_std = x.std(dim=0, keepdim=True)
|
52 |
+
x_std = torch.clamp(x_std, min=1e-8) # Avoid division by zero
|
53 |
+
return (x - x_mean) / x_std
|
54 |
+
|
55 |
else:
|
56 |
+
logger.warning(f"Unknown normalization method: {method}, returning original")
|
57 |
+
return x
|
58 |
+
|
59 |
+
except Exception as e:
|
60 |
+
logger.error(f"Feature normalization failed: {e}")
|
61 |
+
return x
|
62 |
|
63 |
@staticmethod
|
64 |
+
def add_self_loops(edge_index, num_nodes):
|
65 |
+
"""
|
66 |
+
Add self loops to graph with validation
|
67 |
+
|
68 |
+
Args:
|
69 |
+
edge_index: Edge connectivity tensor
|
70 |
+
num_nodes: Number of nodes
|
71 |
+
|
72 |
+
Returns:
|
73 |
+
Edge index with self loops
|
74 |
+
"""
|
75 |
+
if not isinstance(edge_index, torch.Tensor):
|
76 |
+
raise TypeError("edge_index must be a torch.Tensor")
|
77 |
+
if edge_index.dim() != 2 or edge_index.size(0) != 2:
|
78 |
+
raise ValueError("edge_index must have shape (2, num_edges)")
|
79 |
+
if num_nodes <= 0:
|
80 |
+
raise ValueError("num_nodes must be positive")
|
81 |
+
|
82 |
try:
|
83 |
+
device = edge_index.device
|
84 |
+
self_loops = torch.arange(num_nodes, device=device).unsqueeze(0).repeat(2, 1)
|
85 |
+
|
86 |
+
# Check if self loops already exist
|
87 |
+
existing_self_loops = (edge_index[0] == edge_index[1]).any()
|
88 |
+
|
89 |
+
if not existing_self_loops:
|
90 |
+
edge_index = torch.cat([edge_index, self_loops], dim=1)
|
91 |
+
logger.debug(f"Added {num_nodes} self loops")
|
92 |
+
|
93 |
+
return edge_index
|
94 |
+
|
95 |
+
except Exception as e:
|
96 |
+
logger.error(f"Adding self loops failed: {e}")
|
97 |
+
return edge_index
|
98 |
|
99 |
@staticmethod
|
100 |
+
def remove_self_loops(edge_index):
|
101 |
+
"""
|
102 |
+
Remove self loops from graph
|
103 |
+
|
104 |
+
Args:
|
105 |
+
edge_index: Edge connectivity tensor
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
Edge index without self loops
|
109 |
+
"""
|
110 |
+
if not isinstance(edge_index, torch.Tensor):
|
111 |
+
raise TypeError("edge_index must be a torch.Tensor")
|
112 |
+
if edge_index.dim() != 2 or edge_index.size(0) != 2:
|
113 |
+
raise ValueError("edge_index must have shape (2, num_edges)")
|
114 |
+
|
115 |
try:
|
116 |
+
mask = edge_index[0] != edge_index[1]
|
117 |
+
filtered_edges = edge_index[:, mask]
|
118 |
+
|
119 |
+
removed_count = edge_index.size(1) - filtered_edges.size(1)
|
120 |
+
if removed_count > 0:
|
121 |
+
logger.debug(f"Removed {removed_count} self loops")
|
122 |
+
|
123 |
+
return filtered_edges
|
124 |
+
|
125 |
+
except Exception as e:
|
126 |
+
logger.error(f"Removing self loops failed: {e}")
|
127 |
+
return edge_index
|
128 |
|
129 |
@staticmethod
|
130 |
+
def add_positional_features(data, encoding_dim: int = 8):
|
131 |
+
"""
|
132 |
+
Add positional encodings as features with validation
|
133 |
+
|
134 |
+
Args:
|
135 |
+
data: PyTorch Geometric data object
|
136 |
+
encoding_dim: Dimension of positional encoding
|
137 |
+
|
138 |
+
Returns:
|
139 |
+
Data object with enhanced features
|
140 |
+
"""
|
141 |
+
if not hasattr(data, 'x') or not hasattr(data, 'edge_index'):
|
142 |
+
raise ValueError("Data must have x and edge_index attributes")
|
143 |
+
|
144 |
+
num_nodes = data.num_nodes
|
145 |
+
encoding_dim = max(1, min(encoding_dim, num_nodes))
|
146 |
+
|
147 |
try:
|
148 |
+
# Random walk positional encoding
|
149 |
+
if data.edge_index.size(1) > 0:
|
150 |
+
# Create adjacency matrix
|
151 |
+
adj = torch.zeros(num_nodes, num_nodes, dtype=torch.float)
|
152 |
+
adj[data.edge_index[0], data.edge_index[1]] = 1.0
|
153 |
+
adj = adj + adj.t() # Make symmetric
|
154 |
+
|
155 |
+
# Compute degree
|
156 |
+
degree = adj.sum(dim=1)
|
157 |
+
degree = torch.clamp(degree, min=1e-8) # Avoid division by zero
|
158 |
+
|
159 |
+
# Degree normalization
|
160 |
+
D_inv_sqrt = torch.diag(1.0 / torch.sqrt(degree))
|
161 |
+
|
162 |
+
# Normalized adjacency
|
163 |
+
A_norm = D_inv_sqrt @ adj @ D_inv_sqrt
|
164 |
+
|
165 |
+
# Check for numerical issues
|
166 |
+
if torch.isnan(A_norm).any() or torch.isinf(A_norm).any():
|
167 |
+
logger.warning("Numerical issues in adjacency matrix, using simple encoding")
|
168 |
+
pos_encoding = torch.eye(num_nodes)[:, :encoding_dim]
|
169 |
+
else:
|
170 |
+
# Random walk features
|
171 |
+
rw_features = []
|
172 |
+
A_power = torch.eye(num_nodes)
|
173 |
+
|
174 |
+
for k in range(encoding_dim):
|
175 |
+
A_power = A_power @ A_norm
|
176 |
+
rw_features.append(A_power.diag().unsqueeze(1))
|
177 |
+
|
178 |
+
pos_encoding = torch.cat(rw_features, dim=1)
|
179 |
+
else:
|
180 |
+
# No edges - use one-hot encoding
|
181 |
+
pos_encoding = torch.zeros(num_nodes, encoding_dim)
|
182 |
+
for i in range(min(encoding_dim, num_nodes)):
|
183 |
+
pos_encoding[i, i] = 1.0
|
184 |
+
|
185 |
+
# Concatenate with existing features
|
186 |
+
if data.x is not None:
|
187 |
+
data.x = torch.cat([data.x, pos_encoding], dim=1)
|
188 |
else:
|
189 |
+
data.x = pos_encoding
|
190 |
+
|
191 |
+
logger.debug(f"Added positional features of dimension {encoding_dim}")
|
192 |
+
|
193 |
+
except Exception as e:
|
194 |
+
logger.error(f"Adding positional features failed: {e}")
|
195 |
+
# Don't modify data on failure
|
196 |
+
pass
|
197 |
+
|
198 |
+
return data
|
199 |
|
200 |
@staticmethod
|
201 |
+
def augment_graph(data, aug_type: str = 'edge_drop', aug_ratio: float = 0.1):
|
202 |
+
"""
|
203 |
+
Graph augmentation for training with validation
|
204 |
+
|
205 |
+
Args:
|
206 |
+
data: PyTorch Geometric data object
|
207 |
+
aug_type: Type of augmentation
|
208 |
+
aug_ratio: Augmentation strength
|
209 |
+
|
210 |
+
Returns:
|
211 |
+
Augmented data object
|
212 |
+
"""
|
213 |
+
if not (0.0 <= aug_ratio <= 1.0):
|
214 |
+
raise ValueError("aug_ratio must be between 0 and 1")
|
215 |
+
|
216 |
+
# Create a copy to avoid modifying original
|
217 |
+
aug_data = data.clone()
|
218 |
|
219 |
try:
|
220 |
+
if aug_type == 'edge_drop':
|
221 |
+
# Randomly drop edges
|
222 |
+
if aug_data.edge_index.size(1) > 0:
|
223 |
+
num_edges = aug_data.edge_index.size(1)
|
224 |
+
mask = torch.rand(num_edges) > aug_ratio
|
225 |
+
aug_data.edge_index = aug_data.edge_index[:, mask]
|
226 |
+
logger.debug(f"Dropped {(~mask).sum()} edges")
|
227 |
|
228 |
+
elif aug_type == 'node_drop':
|
229 |
+
# Randomly drop nodes
|
230 |
+
num_nodes = aug_data.num_nodes
|
231 |
+
if num_nodes > 1:
|
232 |
+
keep_mask = torch.rand(num_nodes) > aug_ratio
|
233 |
+
|
234 |
+
# Ensure at least one node remains
|
235 |
+
if not keep_mask.any():
|
236 |
+
keep_mask[0] = True
|
237 |
+
|
238 |
+
keep_nodes = torch.where(keep_mask)[0]
|
239 |
+
|
240 |
+
# Update node features
|
241 |
+
if aug_data.x is not None:
|
242 |
+
aug_data.x = aug_data.x[keep_nodes]
|
243 |
+
|
244 |
+
# Update labels if they exist and are node-level
|
245 |
+
if hasattr(aug_data, 'y') and aug_data.y.size(0) == num_nodes:
|
246 |
+
aug_data.y = aug_data.y[keep_nodes]
|
247 |
+
|
248 |
+
# Update edge index
|
249 |
+
if aug_data.edge_index.size(1) > 0:
|
250 |
+
# Create node mapping
|
251 |
+
node_map = torch.full((num_nodes,), -1, dtype=torch.long)
|
252 |
+
node_map[keep_nodes] = torch.arange(len(keep_nodes))
|
253 |
+
|
254 |
+
# Filter edges
|
255 |
+
edge_mask = keep_mask[aug_data.edge_index[0]] & keep_mask[aug_data.edge_index[1]]
|
256 |
+
if edge_mask.any():
|
257 |
+
filtered_edges = aug_data.edge_index[:, edge_mask]
|
258 |
+
aug_data.edge_index = node_map[filtered_edges]
|
259 |
+
else:
|
260 |
+
aug_data.edge_index = torch.empty((2, 0), dtype=torch.long)
|
261 |
+
|
262 |
+
logger.debug(f"Kept {len(keep_nodes)} out of {num_nodes} nodes")
|
263 |
|
264 |
+
elif aug_type == 'feature_noise':
|
265 |
+
# Add Gaussian noise to features
|
266 |
+
if aug_data.x is not None:
|
267 |
+
noise = torch.randn_like(aug_data.x) * aug_ratio
|
268 |
+
aug_data.x = aug_data.x + noise
|
269 |
+
logger.debug(f"Added noise with std {aug_ratio}")
|
270 |
|
271 |
+
elif aug_type == 'feature_mask':
|
272 |
+
# Randomly mask features
|
273 |
+
if aug_data.x is not None:
|
274 |
+
mask = torch.rand_like(aug_data.x) > aug_ratio
|
275 |
+
aug_data.x = aug_data.x * mask
|
276 |
+
logger.debug(f"Masked {(~mask).sum()} feature values")
|
277 |
|
278 |
+
else:
|
279 |
+
logger.warning(f"Unknown augmentation type: {aug_type}")
|
|
|
280 |
|
281 |
except Exception as e:
|
282 |
+
logger.error(f"Graph augmentation failed: {e}")
|
283 |
+
return data # Return original on failure
|
284 |
+
|
285 |
+
return aug_data
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
@staticmethod
|
288 |
+
def to_device_safe(data, device):
|
289 |
+
"""
|
290 |
+
Move data to device safely with validation
|
291 |
|
292 |
+
Args:
|
293 |
+
data: Data to move
|
294 |
+
device: Target device
|
295 |
+
|
296 |
+
Returns:
|
297 |
+
Data on target device
|
298 |
+
"""
|
299 |
+
try:
|
300 |
+
if hasattr(data, 'to'):
|
301 |
+
return data.to(device)
|
302 |
+
elif isinstance(data, (list, tuple)):
|
303 |
+
return [GraphProcessor.to_device_safe(item, device) for item in data]
|
304 |
+
elif isinstance(data, dict):
|
305 |
+
return {k: GraphProcessor.to_device_safe(v, device) for k, v in data.items()}
|
306 |
+
else:
|
307 |
+
return data
|
308 |
+
except Exception as e:
|
309 |
+
logger.error(f"Device transfer failed: {e}")
|
310 |
+
return data
|
311 |
+
|
312 |
+
@staticmethod
|
313 |
+
def validate_data(data):
|
314 |
+
"""
|
315 |
+
Validate graph data integrity with comprehensive checks
|
316 |
+
|
317 |
+
Args:
|
318 |
+
data: PyTorch Geometric data object
|
319 |
+
|
320 |
+
Returns:
|
321 |
+
List of validation errors (empty if valid)
|
322 |
+
"""
|
323 |
+
errors = []
|
324 |
|
325 |
try:
|
326 |
+
# Check basic structure
|
327 |
+
if not hasattr(data, 'edge_index'):
|
328 |
+
errors.append("Missing edge_index attribute")
|
329 |
+
elif not isinstance(data.edge_index, torch.Tensor):
|
330 |
+
errors.append("edge_index must be a tensor")
|
331 |
+
elif data.edge_index.dim() != 2 or data.edge_index.size(0) != 2:
|
332 |
+
errors.append("edge_index must have shape (2, num_edges)")
|
333 |
|
334 |
+
# Check node features
|
335 |
+
if hasattr(data, 'x') and data.x is not None:
|
336 |
+
if not isinstance(data.x, torch.Tensor):
|
337 |
+
errors.append("Node features x must be a tensor")
|
338 |
+
elif data.x.dim() != 2:
|
339 |
+
errors.append("Node features x must be 2D")
|
340 |
+
elif hasattr(data, 'num_nodes') and data.x.size(0) != data.num_nodes:
|
341 |
+
errors.append("Feature matrix size mismatch with num_nodes")
|
342 |
+
|
343 |
+
# Check labels
|
344 |
+
if hasattr(data, 'y') and data.y is not None:
|
345 |
+
if not isinstance(data.y, torch.Tensor):
|
346 |
+
errors.append("Labels y must be a tensor")
|
347 |
+
|
348 |
+
# Check edge indices bounds
|
349 |
+
if hasattr(data, 'edge_index') and data.edge_index.size(1) > 0:
|
350 |
+
max_idx = data.edge_index.max().item()
|
351 |
+
min_idx = data.edge_index.min().item()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
|
353 |
+
if min_idx < 0:
|
354 |
+
errors.append("Edge indices contain negative values")
|
355 |
+
|
356 |
+
if hasattr(data, 'num_nodes') and max_idx >= data.num_nodes:
|
357 |
+
errors.append("Edge indices exceed number of nodes")
|
358 |
+
|
359 |
+
# Check for NaN or infinite values
|
360 |
+
if hasattr(data, 'x') and data.x is not None:
|
361 |
+
if torch.isnan(data.x).any():
|
362 |
+
errors.append("Node features contain NaN values")
|
363 |
+
if torch.isinf(data.x).any():
|
364 |
+
errors.append("Node features contain infinite values")
|
365 |
+
|
366 |
+
# Check data types
|
367 |
+
if hasattr(data, 'edge_index'):
|
368 |
+
if data.edge_index.dtype not in [torch.long, torch.int]:
|
369 |
+
errors.append("edge_index must have integer dtype")
|
370 |
+
|
371 |
except Exception as e:
|
372 |
+
errors.append(f"Validation error: {str(e)}")
|
373 |
+
|
374 |
+
if errors:
|
375 |
+
logger.warning(f"Data validation found {len(errors)} errors")
|
376 |
+
|
377 |
+
return errors
|
|
|
|
|
|
|
|
|
378 |
|
379 |
@staticmethod
|
380 |
+
def repair_data(data):
|
381 |
+
"""
|
382 |
+
Attempt to repair common data issues
|
383 |
+
|
384 |
+
Args:
|
385 |
+
data: PyTorch Geometric data object
|
386 |
+
|
387 |
+
Returns:
|
388 |
+
Repaired data object
|
389 |
+
"""
|
390 |
+
try:
|
391 |
+
# Fix edge index dtype
|
392 |
+
if hasattr(data, 'edge_index') and data.edge_index.dtype not in [torch.long, torch.int]:
|
393 |
+
data.edge_index = data.edge_index.long()
|
394 |
+
logger.info("Fixed edge_index dtype")
|
395 |
+
|
396 |
+
# Remove invalid edges
|
397 |
+
if hasattr(data, 'edge_index') and hasattr(data, 'num_nodes'):
|
398 |
+
valid_mask = (
|
399 |
+
(data.edge_index[0] >= 0) & (data.edge_index[0] < data.num_nodes) &
|
400 |
+
(data.edge_index[1] >= 0) & (data.edge_index[1] < data.num_nodes)
|
401 |
+
)
|
402 |
+
|
403 |
+
if not valid_mask.all():
|
404 |
+
data.edge_index = data.edge_index[:, valid_mask]
|
405 |
+
logger.info(f"Removed {(~valid_mask).sum()} invalid edges")
|
406 |
+
|
407 |
+
# Handle NaN values in features
|
408 |
+
if hasattr(data, 'x') and data.x is not None:
|
409 |
+
if torch.isnan(data.x).any():
|
410 |
+
data.x = torch.where(torch.isnan(data.x), torch.zeros_like(data.x), data.x)
|
411 |
+
logger.info("Replaced NaN values in features with zeros")
|
412 |
+
|
413 |
+
if torch.isinf(data.x).any():
|
414 |
+
data.x = torch.where(torch.isinf(data.x), torch.zeros_like(data.x), data.x)
|
415 |
+
logger.info("Replaced infinite values in features with zeros")
|
416 |
+
|
417 |
+
except Exception as e:
|
418 |
+
logger.error(f"Data repair failed: {e}")
|
419 |
+
|
420 |
+
return data
|