Update utils/metrics.py
Browse files- utils/metrics.py +76 -378
utils/metrics.py
CHANGED
@@ -1,420 +1,118 @@
|
|
1 |
import torch
|
2 |
import torch.nn.functional as F
|
3 |
-
from
|
4 |
-
from torch_geometric.transforms import Compose
|
5 |
import numpy as np
|
6 |
import logging
|
7 |
|
8 |
logger = logging.getLogger(__name__)
|
9 |
|
10 |
-
class
|
11 |
-
"""
|
12 |
-
Advanced data preprocessing utilities
|
13 |
-
Enterprise-grade with comprehensive validation
|
14 |
-
"""
|
15 |
|
16 |
@staticmethod
|
17 |
-
def
|
18 |
-
"""
|
19 |
-
Normalize node features with validation
|
20 |
-
|
21 |
-
Args:
|
22 |
-
x: Feature tensor
|
23 |
-
method: Normalization method ('l2', 'minmax', 'standard')
|
24 |
-
|
25 |
-
Returns:
|
26 |
-
Normalized feature tensor
|
27 |
-
"""
|
28 |
-
if not isinstance(x, torch.Tensor):
|
29 |
-
raise TypeError("x must be a torch.Tensor")
|
30 |
-
if x.dim() != 2:
|
31 |
-
raise ValueError("x must be a 2D tensor")
|
32 |
-
|
33 |
try:
|
34 |
-
if
|
35 |
-
|
36 |
-
norms = torch.norm(x, p=2, dim=1, keepdim=True)
|
37 |
-
norms = torch.clamp(norms, min=1e-8) # Avoid division by zero
|
38 |
-
return x / norms
|
39 |
-
|
40 |
-
elif method == 'minmax':
|
41 |
-
# Min-max normalization
|
42 |
-
x_min = x.min(dim=0, keepdim=True)[0]
|
43 |
-
x_max = x.max(dim=0, keepdim=True)[0]
|
44 |
-
x_range = x_max - x_min
|
45 |
-
x_range = torch.clamp(x_range, min=1e-8) # Avoid division by zero
|
46 |
-
return (x - x_min) / x_range
|
47 |
-
|
48 |
-
elif method == 'standard':
|
49 |
-
# Standard normalization (z-score)
|
50 |
-
x_mean = x.mean(dim=0, keepdim=True)
|
51 |
-
x_std = x.std(dim=0, keepdim=True)
|
52 |
-
x_std = torch.clamp(x_std, min=1e-8) # Avoid division by zero
|
53 |
-
return (x - x_mean) / x_std
|
54 |
-
|
55 |
else:
|
56 |
-
|
57 |
-
return x
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
return x
|
62 |
-
|
63 |
-
@staticmethod
|
64 |
-
def add_self_loops(edge_index, num_nodes):
|
65 |
-
"""
|
66 |
-
Add self loops to graph with validation
|
67 |
-
|
68 |
-
Args:
|
69 |
-
edge_index: Edge connectivity tensor
|
70 |
-
num_nodes: Number of nodes
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
"""
|
75 |
-
if not isinstance(edge_index, torch.Tensor):
|
76 |
-
raise TypeError("edge_index must be a torch.Tensor")
|
77 |
-
if edge_index.dim() != 2 or edge_index.size(0) != 2:
|
78 |
-
raise ValueError("edge_index must have shape (2, num_edges)")
|
79 |
-
if num_nodes <= 0:
|
80 |
-
raise ValueError("num_nodes must be positive")
|
81 |
-
|
82 |
-
try:
|
83 |
-
device = edge_index.device
|
84 |
-
self_loops = torch.arange(num_nodes, device=device).unsqueeze(0).repeat(2, 1)
|
85 |
-
|
86 |
-
# Check if self loops already exist
|
87 |
-
existing_self_loops = (edge_index[0] == edge_index[1]).any()
|
88 |
|
89 |
-
if
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
return
|
94 |
|
95 |
except Exception as e:
|
96 |
-
logger.error(f"
|
97 |
-
return
|
98 |
|
99 |
-
@staticmethod
|
100 |
-
def
|
101 |
-
"""
|
102 |
-
Remove self loops from graph
|
103 |
-
|
104 |
-
Args:
|
105 |
-
edge_index: Edge connectivity tensor
|
106 |
-
|
107 |
-
Returns:
|
108 |
-
Edge index without self loops
|
109 |
-
"""
|
110 |
-
if not isinstance(edge_index, torch.Tensor):
|
111 |
-
raise TypeError("edge_index must be a torch.Tensor")
|
112 |
-
if edge_index.dim() != 2 or edge_index.size(0) != 2:
|
113 |
-
raise ValueError("edge_index must have shape (2, num_edges)")
|
114 |
-
|
115 |
try:
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
122 |
|
123 |
-
|
|
|
124 |
|
125 |
-
|
126 |
-
logger.error(f"Removing self loops failed: {e}")
|
127 |
-
return edge_index
|
128 |
-
|
129 |
-
@staticmethod
|
130 |
-
def add_positional_features(data, encoding_dim: int = 8):
|
131 |
-
"""
|
132 |
-
Add positional encodings as features with validation
|
133 |
-
|
134 |
-
Args:
|
135 |
-
data: PyTorch Geometric data object
|
136 |
-
encoding_dim: Dimension of positional encoding
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
if not hasattr(data, 'x') or not hasattr(data, 'edge_index'):
|
142 |
-
raise ValueError("Data must have x and edge_index attributes")
|
143 |
-
|
144 |
-
num_nodes = data.num_nodes
|
145 |
-
encoding_dim = max(1, min(encoding_dim, num_nodes))
|
146 |
-
|
147 |
-
try:
|
148 |
-
# Random walk positional encoding
|
149 |
-
if data.edge_index.size(1) > 0:
|
150 |
-
# Create adjacency matrix
|
151 |
-
adj = torch.zeros(num_nodes, num_nodes, dtype=torch.float)
|
152 |
-
adj[data.edge_index[0], data.edge_index[1]] = 1.0
|
153 |
-
adj = adj + adj.t() # Make symmetric
|
154 |
-
|
155 |
-
# Compute degree
|
156 |
-
degree = adj.sum(dim=1)
|
157 |
-
degree = torch.clamp(degree, min=1e-8) # Avoid division by zero
|
158 |
|
159 |
-
|
160 |
-
D_inv_sqrt = torch.diag(1.0 / torch.sqrt(degree))
|
161 |
-
|
162 |
-
# Normalized adjacency
|
163 |
-
A_norm = D_inv_sqrt @ adj @ D_inv_sqrt
|
164 |
-
|
165 |
-
# Check for numerical issues
|
166 |
-
if torch.isnan(A_norm).any() or torch.isinf(A_norm).any():
|
167 |
-
logger.warning("Numerical issues in adjacency matrix, using simple encoding")
|
168 |
-
pos_encoding = torch.eye(num_nodes)[:, :encoding_dim]
|
169 |
-
else:
|
170 |
-
# Random walk features
|
171 |
-
rw_features = []
|
172 |
-
A_power = torch.eye(num_nodes)
|
173 |
-
|
174 |
-
for k in range(encoding_dim):
|
175 |
-
A_power = A_power @ A_norm
|
176 |
-
rw_features.append(A_power.diag().unsqueeze(1))
|
177 |
-
|
178 |
-
pos_encoding = torch.cat(rw_features, dim=1)
|
179 |
-
else:
|
180 |
-
# No edges - use one-hot encoding
|
181 |
-
pos_encoding = torch.zeros(num_nodes, encoding_dim)
|
182 |
-
for i in range(min(encoding_dim, num_nodes)):
|
183 |
-
pos_encoding[i, i] = 1.0
|
184 |
-
|
185 |
-
# Concatenate with existing features
|
186 |
-
if data.x is not None:
|
187 |
-
data.x = torch.cat([data.x, pos_encoding], dim=1)
|
188 |
-
else:
|
189 |
-
data.x = pos_encoding
|
190 |
-
|
191 |
-
logger.debug(f"Added positional features of dimension {encoding_dim}")
|
192 |
|
193 |
except Exception as e:
|
194 |
-
logger.error(f"
|
195 |
-
|
196 |
-
pass
|
197 |
-
|
198 |
-
return data
|
199 |
|
200 |
@staticmethod
|
201 |
-
def
|
202 |
-
"""
|
203 |
-
Graph augmentation for training with validation
|
204 |
-
|
205 |
-
Args:
|
206 |
-
data: PyTorch Geometric data object
|
207 |
-
aug_type: Type of augmentation
|
208 |
-
aug_ratio: Augmentation strength
|
209 |
-
|
210 |
-
Returns:
|
211 |
-
Augmented data object
|
212 |
-
"""
|
213 |
-
if not (0.0 <= aug_ratio <= 1.0):
|
214 |
-
raise ValueError("aug_ratio must be between 0 and 1")
|
215 |
-
|
216 |
-
# Create a copy to avoid modifying original
|
217 |
-
aug_data = data.clone()
|
218 |
-
|
219 |
try:
|
220 |
-
if
|
221 |
-
|
222 |
-
if aug_data.edge_index.size(1) > 0:
|
223 |
-
num_edges = aug_data.edge_index.size(1)
|
224 |
-
mask = torch.rand(num_edges) > aug_ratio
|
225 |
-
aug_data.edge_index = aug_data.edge_index[:, mask]
|
226 |
-
logger.debug(f"Dropped {(~mask).sum()} edges")
|
227 |
-
|
228 |
-
elif aug_type == 'node_drop':
|
229 |
-
# Randomly drop nodes
|
230 |
-
num_nodes = aug_data.num_nodes
|
231 |
-
if num_nodes > 1:
|
232 |
-
keep_mask = torch.rand(num_nodes) > aug_ratio
|
233 |
-
|
234 |
-
# Ensure at least one node remains
|
235 |
-
if not keep_mask.any():
|
236 |
-
keep_mask[0] = True
|
237 |
-
|
238 |
-
keep_nodes = torch.where(keep_mask)[0]
|
239 |
-
|
240 |
-
# Update node features
|
241 |
-
if aug_data.x is not None:
|
242 |
-
aug_data.x = aug_data.x[keep_nodes]
|
243 |
-
|
244 |
-
# Update labels if they exist and are node-level
|
245 |
-
if hasattr(aug_data, 'y') and aug_data.y.size(0) == num_nodes:
|
246 |
-
aug_data.y = aug_data.y[keep_nodes]
|
247 |
-
|
248 |
-
# Update edge index
|
249 |
-
if aug_data.edge_index.size(1) > 0:
|
250 |
-
# Create node mapping
|
251 |
-
node_map = torch.full((num_nodes,), -1, dtype=torch.long)
|
252 |
-
node_map[keep_nodes] = torch.arange(len(keep_nodes))
|
253 |
-
|
254 |
-
# Filter edges
|
255 |
-
edge_mask = keep_mask[aug_data.edge_index[0]] & keep_mask[aug_data.edge_index[1]]
|
256 |
-
if edge_mask.any():
|
257 |
-
filtered_edges = aug_data.edge_index[:, edge_mask]
|
258 |
-
aug_data.edge_index = node_map[filtered_edges]
|
259 |
-
else:
|
260 |
-
aug_data.edge_index = torch.empty((2, 0), dtype=torch.long)
|
261 |
-
|
262 |
-
logger.debug(f"Kept {len(keep_nodes)} out of {num_nodes} nodes")
|
263 |
-
|
264 |
-
elif aug_type == 'feature_noise':
|
265 |
-
# Add Gaussian noise to features
|
266 |
-
if aug_data.x is not None:
|
267 |
-
noise = torch.randn_like(aug_data.x) * aug_ratio
|
268 |
-
aug_data.x = aug_data.x + noise
|
269 |
-
logger.debug(f"Added noise with std {aug_ratio}")
|
270 |
-
|
271 |
-
elif aug_type == 'feature_mask':
|
272 |
-
# Randomly mask features
|
273 |
-
if aug_data.x is not None:
|
274 |
-
mask = torch.rand_like(aug_data.x) > aug_ratio
|
275 |
-
aug_data.x = aug_data.x * mask
|
276 |
-
logger.debug(f"Masked {(~mask).sum()} feature values")
|
277 |
-
|
278 |
else:
|
279 |
-
|
280 |
|
281 |
-
|
282 |
-
|
283 |
-
return data # Return original on failure
|
284 |
-
|
285 |
-
return aug_data
|
286 |
-
|
287 |
-
@staticmethod
|
288 |
-
def to_device_safe(data, device):
|
289 |
-
"""
|
290 |
-
Move data to device safely with validation
|
291 |
-
|
292 |
-
Args:
|
293 |
-
data: Data to move
|
294 |
-
device: Target device
|
295 |
-
|
296 |
-
Returns:
|
297 |
-
Data on target device
|
298 |
-
"""
|
299 |
-
try:
|
300 |
-
if hasattr(data, 'to'):
|
301 |
-
return data.to(device)
|
302 |
-
elif isinstance(data, (list, tuple)):
|
303 |
-
return [GraphProcessor.to_device_safe(item, device) for item in data]
|
304 |
-
elif isinstance(data, dict):
|
305 |
-
return {k: GraphProcessor.to_device_safe(v, device) for k, v in data.items()}
|
306 |
-
else:
|
307 |
-
return data
|
308 |
-
except Exception as e:
|
309 |
-
logger.error(f"Device transfer failed: {e}")
|
310 |
-
return data
|
311 |
-
|
312 |
-
@staticmethod
|
313 |
-
def validate_data(data):
|
314 |
-
"""
|
315 |
-
Validate graph data integrity with comprehensive checks
|
316 |
-
|
317 |
-
Args:
|
318 |
-
data: PyTorch Geometric data object
|
319 |
-
|
320 |
-
Returns:
|
321 |
-
List of validation errors (empty if valid)
|
322 |
-
"""
|
323 |
-
errors = []
|
324 |
-
|
325 |
-
try:
|
326 |
-
# Check basic structure
|
327 |
-
if not hasattr(data, 'edge_index'):
|
328 |
-
errors.append("Missing edge_index attribute")
|
329 |
-
elif not isinstance(data.edge_index, torch.Tensor):
|
330 |
-
errors.append("edge_index must be a tensor")
|
331 |
-
elif data.edge_index.dim() != 2 or data.edge_index.size(0) != 2:
|
332 |
-
errors.append("edge_index must have shape (2, num_edges)")
|
333 |
|
334 |
-
|
335 |
-
|
336 |
-
if not isinstance(data.x, torch.Tensor):
|
337 |
-
errors.append("Node features x must be a tensor")
|
338 |
-
elif data.x.dim() != 2:
|
339 |
-
errors.append("Node features x must be 2D")
|
340 |
-
elif hasattr(data, 'num_nodes') and data.x.size(0) != data.num_nodes:
|
341 |
-
errors.append("Feature matrix size mismatch with num_nodes")
|
342 |
|
343 |
-
|
344 |
-
if hasattr(data, 'y') and data.y is not None:
|
345 |
-
if not isinstance(data.y, torch.Tensor):
|
346 |
-
errors.append("Labels y must be a tensor")
|
347 |
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
min_idx = data.edge_index.min().item()
|
352 |
-
|
353 |
-
if min_idx < 0:
|
354 |
-
errors.append("Edge indices contain negative values")
|
355 |
|
356 |
-
|
357 |
-
errors.append("Edge indices exceed number of nodes")
|
358 |
-
|
359 |
-
# Check for NaN or infinite values
|
360 |
-
if hasattr(data, 'x') and data.x is not None:
|
361 |
-
if torch.isnan(data.x).any():
|
362 |
-
errors.append("Node features contain NaN values")
|
363 |
-
if torch.isinf(data.x).any():
|
364 |
-
errors.append("Node features contain infinite values")
|
365 |
-
|
366 |
-
# Check data types
|
367 |
-
if hasattr(data, 'edge_index'):
|
368 |
-
if data.edge_index.dtype not in [torch.long, torch.int]:
|
369 |
-
errors.append("edge_index must have integer dtype")
|
370 |
|
371 |
except Exception as e:
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
logger.warning(f"Data validation found {len(errors)} errors")
|
376 |
-
|
377 |
-
return errors
|
378 |
-
|
379 |
@staticmethod
|
380 |
-
def
|
381 |
-
"""
|
382 |
-
Attempt to repair common data issues
|
383 |
-
|
384 |
-
Args:
|
385 |
-
data: PyTorch Geometric data object
|
386 |
-
|
387 |
-
Returns:
|
388 |
-
Repaired data object
|
389 |
-
"""
|
390 |
try:
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
# Remove invalid edges
|
397 |
-
if hasattr(data, 'edge_index') and hasattr(data, 'num_nodes'):
|
398 |
-
valid_mask = (
|
399 |
-
(data.edge_index[0] >= 0) & (data.edge_index[0] < data.num_nodes) &
|
400 |
-
(data.edge_index[1] >= 0) & (data.edge_index[1] < data.num_nodes)
|
401 |
-
)
|
402 |
|
403 |
-
|
404 |
-
|
405 |
-
|
|
|
|
|
|
|
|
|
|
|
406 |
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
logger.info("Replaced NaN values in features with zeros")
|
412 |
|
413 |
-
|
414 |
-
data.x = torch.where(torch.isinf(data.x), torch.zeros_like(data.x), data.x)
|
415 |
-
logger.info("Replaced infinite values in features with zeros")
|
416 |
|
417 |
except Exception as e:
|
418 |
-
logger.error(f"
|
419 |
-
|
420 |
-
return data
|
|
|
1 |
import torch
|
2 |
import torch.nn.functional as F
|
3 |
+
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score, classification_report, precision_score, recall_score
|
|
|
4 |
import numpy as np
|
5 |
import logging
|
6 |
|
7 |
logger = logging.getLogger(__name__)
|
8 |
|
9 |
+
class GraphMetrics:
|
10 |
+
"""Comprehensive evaluation metrics for graph learning"""
|
|
|
|
|
|
|
11 |
|
12 |
@staticmethod
|
13 |
+
def accuracy(pred, target):
|
14 |
+
"""Classification accuracy with validation"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
try:
|
16 |
+
if pred.dim() > 1:
|
17 |
+
pred_labels = pred.argmax(dim=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
else:
|
19 |
+
pred_labels = pred
|
|
|
20 |
|
21 |
+
if pred_labels.shape != target.shape:
|
22 |
+
raise ValueError("Prediction and target shapes don't match")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
correct = (pred_labels == target).float()
|
25 |
+
accuracy = correct.mean().item()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
if torch.isnan(torch.tensor(accuracy)) or torch.isinf(torch.tensor(accuracy)):
|
28 |
+
logger.warning("Invalid accuracy computed, returning 0.0")
|
29 |
+
return 0.0
|
30 |
+
|
31 |
+
return accuracy
|
32 |
|
33 |
except Exception as e:
|
34 |
+
logger.error(f"Accuracy computation failed: {e}")
|
35 |
+
return 0.0
|
36 |
|
37 |
+
@staticmethod
|
38 |
+
def f1_score_macro(pred, target):
|
39 |
+
"""Macro F1 score with robust error handling"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
try:
|
41 |
+
if pred.dim() > 1:
|
42 |
+
pred_labels = pred.argmax(dim=1)
|
43 |
+
else:
|
44 |
+
pred_labels = pred
|
45 |
+
|
46 |
+
pred_labels = pred_labels.cpu().numpy()
|
47 |
+
target_labels = target.cpu().numpy()
|
48 |
|
49 |
+
if len(pred_labels) == 0 or len(target_labels) == 0:
|
50 |
+
return 0.0
|
51 |
|
52 |
+
f1 = f1_score(target_labels, pred_labels, average='macro', zero_division=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
if np.isnan(f1) or np.isinf(f1):
|
55 |
+
logger.warning("Invalid F1 macro score, returning 0.0")
|
56 |
+
return 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
return float(f1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
except Exception as e:
|
61 |
+
logger.error(f"F1 macro computation failed: {e}")
|
62 |
+
return 0.0
|
|
|
|
|
|
|
63 |
|
64 |
@staticmethod
|
65 |
+
def f1_score_micro(pred, target):
|
66 |
+
"""Micro F1 score with robust error handling"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
try:
|
68 |
+
if pred.dim() > 1:
|
69 |
+
pred_labels = pred.argmax(dim=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
else:
|
71 |
+
pred_labels = pred
|
72 |
|
73 |
+
pred_labels = pred_labels.cpu().numpy()
|
74 |
+
target_labels = target.cpu().numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
if len(pred_labels) == 0 or len(target_labels) == 0:
|
77 |
+
return 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
f1 = f1_score(target_labels, pred_labels, average='micro', zero_division=0)
|
|
|
|
|
|
|
80 |
|
81 |
+
if np.isnan(f1) or np.isinf(f1):
|
82 |
+
logger.warning("Invalid F1 micro score, returning 0.0")
|
83 |
+
return 0.0
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
return float(f1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
except Exception as e:
|
88 |
+
logger.error(f"F1 micro computation failed: {e}")
|
89 |
+
return 0.0
|
90 |
+
|
|
|
|
|
|
|
|
|
91 |
@staticmethod
|
92 |
+
def precision_recall(pred, target, average='macro'):
|
93 |
+
"""Compute precision and recall scores"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
try:
|
95 |
+
if pred.dim() > 1:
|
96 |
+
pred_labels = pred.argmax(dim=1)
|
97 |
+
else:
|
98 |
+
pred_labels = pred
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
+
pred_labels = pred_labels.cpu().numpy()
|
101 |
+
target_labels = target.cpu().numpy()
|
102 |
+
|
103 |
+
if len(pred_labels) == 0 or len(target_labels) == 0:
|
104 |
+
return 0.0, 0.0
|
105 |
+
|
106 |
+
precision = precision_score(target_labels, pred_labels, average=average, zero_division=0)
|
107 |
+
recall = recall_score(target_labels, pred_labels, average=average, zero_division=0)
|
108 |
|
109 |
+
if np.isnan(precision) or np.isinf(precision):
|
110 |
+
precision = 0.0
|
111 |
+
if np.isnan(recall) or np.isinf(recall):
|
112 |
+
recall = 0.0
|
|
|
113 |
|
114 |
+
return float(precision), float(recall)
|
|
|
|
|
115 |
|
116 |
except Exception as e:
|
117 |
+
logger.error(f"Precision/recall computation failed: {e}")
|
118 |
+
return 0.0, 0.0
|
|