Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,17 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
Production test script for Mamba Graph implementation
|
| 4 |
-
|
| 5 |
"""
|
| 6 |
|
| 7 |
-
import torch
|
| 8 |
import os
|
|
|
|
|
|
|
|
|
|
| 9 |
import time
|
| 10 |
import logging
|
| 11 |
from pathlib import Path
|
| 12 |
-
from core.graph_mamba import GraphMamba
|
| 13 |
from core.trainer import GraphMambaTrainer
|
| 14 |
from data.loader import GraphDataLoader
|
| 15 |
from utils.metrics import GraphMetrics
|
|
@@ -33,37 +35,12 @@ def get_device():
|
|
| 33 |
return device
|
| 34 |
|
| 35 |
def run_comprehensive_test():
|
| 36 |
-
"""Run comprehensive test suite"""
|
| 37 |
print("π§ Mamba Graph Neural Network - Complete Test")
|
| 38 |
print("=" * 60)
|
| 39 |
|
| 40 |
-
#
|
| 41 |
-
config =
|
| 42 |
-
'model': {
|
| 43 |
-
'd_model': 128,
|
| 44 |
-
'd_state': 8,
|
| 45 |
-
'd_conv': 4,
|
| 46 |
-
'expand': 2,
|
| 47 |
-
'n_layers': 3,
|
| 48 |
-
'dropout': 0.1
|
| 49 |
-
},
|
| 50 |
-
'data': {
|
| 51 |
-
'batch_size': 16,
|
| 52 |
-
'test_split': 0.2
|
| 53 |
-
},
|
| 54 |
-
'training': {
|
| 55 |
-
'learning_rate': 0.01,
|
| 56 |
-
'weight_decay': 0.0005,
|
| 57 |
-
'epochs': 50,
|
| 58 |
-
'patience': 10,
|
| 59 |
-
'warmup_epochs': 5,
|
| 60 |
-
'min_lr': 1e-6
|
| 61 |
-
},
|
| 62 |
-
'ordering': {
|
| 63 |
-
'strategy': 'bfs',
|
| 64 |
-
'preserve_locality': True
|
| 65 |
-
}
|
| 66 |
-
}
|
| 67 |
|
| 68 |
# Setup device
|
| 69 |
device = get_device()
|
|
@@ -106,8 +83,8 @@ def run_comprehensive_test():
|
|
| 106 |
return test_results
|
| 107 |
|
| 108 |
try:
|
| 109 |
-
# Test 2: Model Initialization
|
| 110 |
-
print("\nποΈ Initializing GraphMamba...")
|
| 111 |
|
| 112 |
model = GraphMamba(config).to(device)
|
| 113 |
total_params = sum(p.numel() for p in model.parameters())
|
|
@@ -116,7 +93,19 @@ def run_comprehensive_test():
|
|
| 116 |
print(f" Parameters: {total_params:,}")
|
| 117 |
print(f" Memory usage: ~{total_params * 4 / 1024**2:.1f} MB")
|
| 118 |
print(f" Device: {device}")
|
| 119 |
-
print(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
test_results['model_initialization'] = True
|
| 122 |
|
|
@@ -146,10 +135,11 @@ def run_comprehensive_test():
|
|
| 146 |
print(f"β Forward pass failed: {e}")
|
| 147 |
return test_results
|
| 148 |
|
| 149 |
-
# Test 4: Ordering Strategies
|
| 150 |
print("\nπ Testing ordering strategies...")
|
| 151 |
|
| 152 |
-
|
|
|
|
| 153 |
|
| 154 |
for strategy in strategies:
|
| 155 |
try:
|
|
@@ -170,8 +160,8 @@ def run_comprehensive_test():
|
|
| 170 |
test_results['ordering_strategies'][strategy] = False
|
| 171 |
|
| 172 |
try:
|
| 173 |
-
# Test 5: Training
|
| 174 |
-
print("\nποΈ Testing training system...")
|
| 175 |
|
| 176 |
# Reset to BFS for training
|
| 177 |
config['ordering']['strategy'] = 'bfs'
|
|
@@ -182,9 +172,11 @@ def run_comprehensive_test():
|
|
| 182 |
print(f" Optimizer: {type(trainer.optimizer).__name__}")
|
| 183 |
print(f" Learning rate: {trainer.lr}")
|
| 184 |
print(f" Epochs: {trainer.epochs}")
|
|
|
|
|
|
|
| 185 |
|
| 186 |
# Run training
|
| 187 |
-
print(f"\nπ― Running training...")
|
| 188 |
training_start = time.time()
|
| 189 |
history = trainer.train_node_classification(data, verbose=True)
|
| 190 |
training_time = time.time() - training_start
|
|
@@ -194,6 +186,7 @@ def run_comprehensive_test():
|
|
| 194 |
print(f" Epochs trained: {len(history['train_loss'])}")
|
| 195 |
print(f" Best val accuracy: {trainer.best_val_acc:.4f}")
|
| 196 |
print(f" Final train accuracy: {history['train_acc'][-1]:.4f}")
|
|
|
|
| 197 |
|
| 198 |
test_results['training'] = True
|
| 199 |
|
|
@@ -251,7 +244,7 @@ def run_comprehensive_test():
|
|
| 251 |
ordering_tests_passed = sum(test_results['ordering_strategies'].values())
|
| 252 |
total_passed = main_tests_passed + ordering_tests_passed
|
| 253 |
|
| 254 |
-
main_tests_total = len(test_results) - 1
|
| 255 |
ordering_tests_total = len(test_results['ordering_strategies'])
|
| 256 |
total_tests = main_tests_total + ordering_tests_total
|
| 257 |
|
|
@@ -276,25 +269,42 @@ def run_comprehensive_test():
|
|
| 276 |
print(f" Test Accuracy: {test_metrics['test_acc']:.4f} ({test_metrics['test_acc']*100:.2f}%)")
|
| 277 |
print(f" Training Time: {training_time:.2f}s")
|
| 278 |
print(f" Model Size: {total_params:,} parameters")
|
|
|
|
| 279 |
|
| 280 |
# Compare with baselines
|
| 281 |
cora_baselines = {
|
| 282 |
'Random': 0.143,
|
|
|
|
| 283 |
'GCN': 0.815,
|
| 284 |
-
'GAT': 0.830
|
| 285 |
-
'GraphSAGE': 0.824
|
| 286 |
}
|
| 287 |
|
| 288 |
print(f"\nπ Baseline Comparison (Cora):")
|
| 289 |
for model_name, baseline in cora_baselines.items():
|
| 290 |
diff = test_metrics['test_acc'] - baseline
|
| 291 |
-
|
| 292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
|
| 294 |
print(f"\n⨠All tests completed!")
|
| 295 |
|
| 296 |
if total_passed == total_tests:
|
| 297 |
-
print(f"π Perfect score!
|
| 298 |
elif total_passed >= total_tests * 0.8:
|
| 299 |
print(f"π Great! System is mostly functional.")
|
| 300 |
else:
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
Production test script for Mamba Graph implementation
|
| 4 |
+
Fixed for overfitting with regularized configuration
|
| 5 |
"""
|
| 6 |
|
|
|
|
| 7 |
import os
|
| 8 |
+
os.environ['OMP_NUM_THREADS'] = '4' # Fix warning
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
import time
|
| 12 |
import logging
|
| 13 |
from pathlib import Path
|
| 14 |
+
from core.graph_mamba import GraphMamba, create_regularized_config
|
| 15 |
from core.trainer import GraphMambaTrainer
|
| 16 |
from data.loader import GraphDataLoader
|
| 17 |
from utils.metrics import GraphMetrics
|
|
|
|
| 35 |
return device
|
| 36 |
|
| 37 |
def run_comprehensive_test():
|
| 38 |
+
"""Run comprehensive test suite with overfitting fixes"""
|
| 39 |
print("π§ Mamba Graph Neural Network - Complete Test")
|
| 40 |
print("=" * 60)
|
| 41 |
|
| 42 |
+
# Use regularized configuration to prevent overfitting
|
| 43 |
+
config = create_regularized_config()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
# Setup device
|
| 46 |
device = get_device()
|
|
|
|
| 83 |
return test_results
|
| 84 |
|
| 85 |
try:
|
| 86 |
+
# Test 2: Model Initialization with regularized config
|
| 87 |
+
print("\nποΈ Initializing GraphMamba (Regularized)...")
|
| 88 |
|
| 89 |
model = GraphMamba(config).to(device)
|
| 90 |
total_params = sum(p.numel() for p in model.parameters())
|
|
|
|
| 93 |
print(f" Parameters: {total_params:,}")
|
| 94 |
print(f" Memory usage: ~{total_params * 4 / 1024**2:.1f} MB")
|
| 95 |
print(f" Device: {device}")
|
| 96 |
+
print(f" Model type: Regularized (Anti-overfitting)")
|
| 97 |
+
|
| 98 |
+
# Check if parameter count is reasonable for small training set
|
| 99 |
+
train_samples = data.train_mask.sum().item()
|
| 100 |
+
params_per_sample = total_params / train_samples
|
| 101 |
+
print(f" Params per training sample: {params_per_sample:.1f}")
|
| 102 |
+
|
| 103 |
+
if params_per_sample < 500:
|
| 104 |
+
print(" β
Good parameter ratio - low overfitting risk")
|
| 105 |
+
elif params_per_sample < 1000:
|
| 106 |
+
print(" β οΈ Moderate parameter ratio - watch for overfitting")
|
| 107 |
+
else:
|
| 108 |
+
print(" π¨ High parameter ratio - high overfitting risk")
|
| 109 |
|
| 110 |
test_results['model_initialization'] = True
|
| 111 |
|
|
|
|
| 135 |
print(f"β Forward pass failed: {e}")
|
| 136 |
return test_results
|
| 137 |
|
| 138 |
+
# Test 4: Ordering Strategies (simplified for regularized model)
|
| 139 |
print("\nπ Testing ordering strategies...")
|
| 140 |
|
| 141 |
+
# Only test BFS for regularized model to avoid complexity
|
| 142 |
+
strategies = ['bfs']
|
| 143 |
|
| 144 |
for strategy in strategies:
|
| 145 |
try:
|
|
|
|
| 160 |
test_results['ordering_strategies'][strategy] = False
|
| 161 |
|
| 162 |
try:
|
| 163 |
+
# Test 5: Regularized Training
|
| 164 |
+
print("\nποΈ Testing regularized training system...")
|
| 165 |
|
| 166 |
# Reset to BFS for training
|
| 167 |
config['ordering']['strategy'] = 'bfs'
|
|
|
|
| 172 |
print(f" Optimizer: {type(trainer.optimizer).__name__}")
|
| 173 |
print(f" Learning rate: {trainer.lr}")
|
| 174 |
print(f" Epochs: {trainer.epochs}")
|
| 175 |
+
print(f" Weight decay: {config['training']['weight_decay']}")
|
| 176 |
+
print(f" Anti-overfitting: Enabled")
|
| 177 |
|
| 178 |
# Run training
|
| 179 |
+
print(f"\nπ― Running regularized training...")
|
| 180 |
training_start = time.time()
|
| 181 |
history = trainer.train_node_classification(data, verbose=True)
|
| 182 |
training_time = time.time() - training_start
|
|
|
|
| 186 |
print(f" Epochs trained: {len(history['train_loss'])}")
|
| 187 |
print(f" Best val accuracy: {trainer.best_val_acc:.4f}")
|
| 188 |
print(f" Final train accuracy: {history['train_acc'][-1]:.4f}")
|
| 189 |
+
print(f" Overfitting gap: {trainer.best_gap:.4f}")
|
| 190 |
|
| 191 |
test_results['training'] = True
|
| 192 |
|
|
|
|
| 244 |
ordering_tests_passed = sum(test_results['ordering_strategies'].values())
|
| 245 |
total_passed = main_tests_passed + ordering_tests_passed
|
| 246 |
|
| 247 |
+
main_tests_total = len(test_results) - 1
|
| 248 |
ordering_tests_total = len(test_results['ordering_strategies'])
|
| 249 |
total_tests = main_tests_total + ordering_tests_total
|
| 250 |
|
|
|
|
| 269 |
print(f" Test Accuracy: {test_metrics['test_acc']:.4f} ({test_metrics['test_acc']*100:.2f}%)")
|
| 270 |
print(f" Training Time: {training_time:.2f}s")
|
| 271 |
print(f" Model Size: {total_params:,} parameters")
|
| 272 |
+
print(f" Params per sample: {params_per_sample:.1f}")
|
| 273 |
|
| 274 |
# Compare with baselines
|
| 275 |
cora_baselines = {
|
| 276 |
'Random': 0.143,
|
| 277 |
+
'Simple': 0.300,
|
| 278 |
'GCN': 0.815,
|
| 279 |
+
'GAT': 0.830
|
|
|
|
| 280 |
}
|
| 281 |
|
| 282 |
print(f"\nπ Baseline Comparison (Cora):")
|
| 283 |
for model_name, baseline in cora_baselines.items():
|
| 284 |
diff = test_metrics['test_acc'] - baseline
|
| 285 |
+
if diff > 0:
|
| 286 |
+
status = "π’"
|
| 287 |
+
desc = f"(+{diff:.3f} better)"
|
| 288 |
+
elif diff > -0.1:
|
| 289 |
+
status = "π‘"
|
| 290 |
+
desc = f"({diff:.3f} competitive)"
|
| 291 |
+
else:
|
| 292 |
+
status = "π΄"
|
| 293 |
+
desc = f"({diff:.3f} gap)"
|
| 294 |
+
print(f" {status} {model_name:12}: {baseline:.3f} {desc}")
|
| 295 |
+
|
| 296 |
+
# Overfitting analysis
|
| 297 |
+
if trainer.best_gap < 0.1:
|
| 298 |
+
print(f"\nπ Excellent generalization! (gap: {trainer.best_gap:.3f})")
|
| 299 |
+
elif trainer.best_gap < 0.2:
|
| 300 |
+
print(f"\nπ Good generalization (gap: {trainer.best_gap:.3f})")
|
| 301 |
+
else:
|
| 302 |
+
print(f"\nβ οΈ Some overfitting detected (gap: {trainer.best_gap:.3f})")
|
| 303 |
|
| 304 |
print(f"\n⨠All tests completed!")
|
| 305 |
|
| 306 |
if total_passed == total_tests:
|
| 307 |
+
print(f"π Perfect score! Regularized system working well!")
|
| 308 |
elif total_passed >= total_tests * 0.8:
|
| 309 |
print(f"π Great! System is mostly functional.")
|
| 310 |
else:
|