kfoughali commited on
Commit
1bdb453
·
verified ·
1 Parent(s): 069fc7a

Update core/graph_mamba.py

Browse files
Files changed (1) hide show
  1. core/graph_mamba.py +60 -20
core/graph_mamba.py CHANGED
@@ -6,7 +6,7 @@ from .graph_sequencer import GraphSequencer, PositionalEncoder
6
  class GraphMamba(nn.Module):
7
  """
8
  Production Graph-Mamba model
9
- Dynamically handles any graph size and structure
10
  """
11
 
12
  def __init__(self, config):
@@ -48,14 +48,22 @@ class GraphMamba(nn.Module):
48
  # Graph sequencer
49
  self.sequencer = GraphSequencer()
50
 
51
- def _init_input_proj(self, input_dim):
 
 
 
52
  """Initialize input projection dynamically"""
53
  if self.input_proj is None:
54
- self.input_proj = nn.Linear(input_dim, self.d_model)
 
 
 
 
 
55
 
56
  def forward(self, x, edge_index, batch=None):
57
  """
58
- Forward pass with dynamic graph handling
59
 
60
  Args:
61
  x: Node features (num_nodes, input_dim)
@@ -64,9 +72,13 @@ class GraphMamba(nn.Module):
64
  """
65
  num_nodes = x.size(0)
66
  input_dim = x.size(1)
 
 
 
 
67
 
68
  # Initialize input projection if needed
69
- self._init_input_proj(input_dim)
70
 
71
  # Project input features
72
  h = self.input_proj(x) # (num_nodes, d_model)
@@ -81,22 +93,31 @@ class GraphMamba(nn.Module):
81
  return h
82
 
83
  def _process_single_graph(self, h, edge_index):
84
- """Process a single graph"""
85
  num_nodes = h.size(0)
 
 
 
 
86
 
87
  # Get ordering
88
- if self.ordering_strategy == "multi_view":
89
- # Use BFS as primary for now (can be extended)
90
- order = self.sequencer.bfs_ordering(edge_index, num_nodes)
91
- elif self.ordering_strategy == "spectral":
92
  order = self.sequencer.spectral_ordering(edge_index, num_nodes)
93
  elif self.ordering_strategy == "degree":
94
  order = self.sequencer.degree_ordering(edge_index, num_nodes)
 
 
95
  else: # default to BFS
96
  order = self.sequencer.bfs_ordering(edge_index, num_nodes)
97
 
 
 
 
98
  # Add positional encoding
99
  seq_pos, distances = self.pos_encoder.encode_positions(h, edge_index, order)
 
 
 
100
  pos_features = torch.cat([seq_pos, distances], dim=1) # (num_nodes, 11)
101
  pos_embed = self.pos_embed(pos_features)
102
 
@@ -119,7 +140,11 @@ class GraphMamba(nn.Module):
119
  return h_final
120
 
121
  def _process_batch(self, h, edge_index, batch):
122
- """Process batched graphs"""
 
 
 
 
123
  batch_size = batch.max().item() + 1
124
  outputs = []
125
 
@@ -132,11 +157,15 @@ class GraphMamba(nn.Module):
132
  edge_mask = mask[edge_index[0]] & mask[edge_index[1]]
133
  batch_edges = edge_index[:, edge_mask]
134
 
135
- # Reindex edges to local indices
136
- node_indices = torch.where(mask)[0]
137
- node_map = torch.zeros(h.size(0), dtype=torch.long, device=h.device)
138
- node_map[node_indices] = torch.arange(batch_h.size(0), device=h.device)
139
- batch_edges_local = node_map[batch_edges]
 
 
 
 
140
 
141
  # Process subgraph
142
  batch_output = self._process_single_graph(batch_h, batch_edges_local)
@@ -144,7 +173,6 @@ class GraphMamba(nn.Module):
144
 
145
  # Reconstruct full batch
146
  h_out = torch.zeros_like(h)
147
- start_idx = 0
148
  for b, output in enumerate(outputs):
149
  mask = batch == b
150
  h_out[mask] = output
@@ -157,6 +185,18 @@ class GraphMamba(nn.Module):
157
  # Single graph - mean pooling
158
  return h.mean(dim=0, keepdim=True)
159
  else:
160
- # Batched graphs
161
- from torch_geometric.nn import global_mean_pool
162
- return global_mean_pool(h, batch)
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  class GraphMamba(nn.Module):
7
  """
8
  Production Graph-Mamba model
9
+ Device-safe implementation with dynamic handling
10
  """
11
 
12
  def __init__(self, config):
 
48
  # Graph sequencer
49
  self.sequencer = GraphSequencer()
50
 
51
+ # Classification head (for demo)
52
+ self.classifier = None
53
+
54
+ def _init_input_proj(self, input_dim, device):
55
  """Initialize input projection dynamically"""
56
  if self.input_proj is None:
57
+ self.input_proj = nn.Linear(input_dim, self.d_model).to(device)
58
+
59
+ def _init_classifier(self, num_classes, device):
60
+ """Initialize classifier dynamically"""
61
+ if self.classifier is None:
62
+ self.classifier = nn.Linear(self.d_model, num_classes).to(device)
63
 
64
  def forward(self, x, edge_index, batch=None):
65
  """
66
+ Forward pass with device-safe handling
67
 
68
  Args:
69
  x: Node features (num_nodes, input_dim)
 
72
  """
73
  num_nodes = x.size(0)
74
  input_dim = x.size(1)
75
+ device = x.device
76
+
77
+ # Move all components to correct device
78
+ self.to(device)
79
 
80
  # Initialize input projection if needed
81
+ self._init_input_proj(input_dim, device)
82
 
83
  # Project input features
84
  h = self.input_proj(x) # (num_nodes, d_model)
 
93
  return h
94
 
95
  def _process_single_graph(self, h, edge_index):
96
+ """Process a single graph - device safe"""
97
  num_nodes = h.size(0)
98
+ device = h.device
99
+
100
+ # Ensure edge_index is on correct device
101
+ edge_index = edge_index.to(device)
102
 
103
  # Get ordering
104
+ if self.ordering_strategy == "spectral":
 
 
 
105
  order = self.sequencer.spectral_ordering(edge_index, num_nodes)
106
  elif self.ordering_strategy == "degree":
107
  order = self.sequencer.degree_ordering(edge_index, num_nodes)
108
+ elif self.ordering_strategy == "community":
109
+ order = self.sequencer.community_ordering(edge_index, num_nodes)
110
  else: # default to BFS
111
  order = self.sequencer.bfs_ordering(edge_index, num_nodes)
112
 
113
+ # Ensure order is on correct device
114
+ order = order.to(device)
115
+
116
  # Add positional encoding
117
  seq_pos, distances = self.pos_encoder.encode_positions(h, edge_index, order)
118
+ seq_pos = seq_pos.to(device)
119
+ distances = distances.to(device)
120
+
121
  pos_features = torch.cat([seq_pos, distances], dim=1) # (num_nodes, 11)
122
  pos_embed = self.pos_embed(pos_features)
123
 
 
140
  return h_final
141
 
142
  def _process_batch(self, h, edge_index, batch):
143
+ """Process batched graphs - device safe"""
144
+ device = h.device
145
+ batch = batch.to(device)
146
+ edge_index = edge_index.to(device)
147
+
148
  batch_size = batch.max().item() + 1
149
  outputs = []
150
 
 
157
  edge_mask = mask[edge_index[0]] & mask[edge_index[1]]
158
  batch_edges = edge_index[:, edge_mask]
159
 
160
+ if batch_edges.shape[1] > 0:
161
+ # Reindex edges to local indices
162
+ node_indices = torch.where(mask)[0]
163
+ node_map = torch.zeros(h.size(0), dtype=torch.long, device=device)
164
+ node_map[node_indices] = torch.arange(batch_h.size(0), device=device)
165
+ batch_edges_local = node_map[batch_edges]
166
+ else:
167
+ # Empty graph
168
+ batch_edges_local = torch.empty((2, 0), dtype=torch.long, device=device)
169
 
170
  # Process subgraph
171
  batch_output = self._process_single_graph(batch_h, batch_edges_local)
 
173
 
174
  # Reconstruct full batch
175
  h_out = torch.zeros_like(h)
 
176
  for b, output in enumerate(outputs):
177
  mask = batch == b
178
  h_out[mask] = output
 
185
  # Single graph - mean pooling
186
  return h.mean(dim=0, keepdim=True)
187
  else:
188
+ # Batched graphs - manual pooling to avoid dependencies
189
+ device = h.device
190
+ batch = batch.to(device)
191
+ batch_size = batch.max().item() + 1
192
+
193
+ graph_embeddings = []
194
+ for b in range(batch_size):
195
+ mask = batch == b
196
+ if mask.any():
197
+ graph_emb = h[mask].mean(dim=0)
198
+ graph_embeddings.append(graph_emb)
199
+ else:
200
+ graph_embeddings.append(torch.zeros(h.size(1), device=device))
201
+
202
+ return torch.stack(graph_embeddings)