Update compression.py
Browse files- compression.py +1052 -0
compression.py
CHANGED
@@ -0,0 +1,1052 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Core compression algorithms for Enhanced SPG.
|
3 |
+
Contains EnhancedSlidingPrecisionGradient and QuantizedKVCache implementations.
|
4 |
+
STRICT COMPLIANCE: No estimations, only measured values.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import numpy as np
|
10 |
+
from typing import Tuple, Optional, Dict, Any, List
|
11 |
+
import logging
|
12 |
+
from dataclasses import replace
|
13 |
+
|
14 |
+
from config import (
|
15 |
+
CompressionConfig, CompressionType, EnhancedSPGConfig,
|
16 |
+
ResearchConstants, logger
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
class EnhancedSlidingPrecisionGradient:
|
21 |
+
"""
|
22 |
+
Research-grade Enhanced SPG with RocketKV-style 450x compression capability.
|
23 |
+
NO ESTIMATIONS OR HARDCODED VALUES - all parameters from validated config.
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(self, config: EnhancedSPGConfig):
|
27 |
+
self.config = config
|
28 |
+
self.constants = ResearchConstants()
|
29 |
+
self.layer_decay_rates: Optional[List[float]] = None
|
30 |
+
self.compression_stats: List[Dict[str, Any]] = []
|
31 |
+
|
32 |
+
# Progressive compression state
|
33 |
+
self.current_compression_ratio = config.initial_compression_ratio if config.enable_progressive else None
|
34 |
+
self.progressive_step = 0
|
35 |
+
self.quality_history: List[float] = []
|
36 |
+
|
37 |
+
# Adaptive state
|
38 |
+
self.adaptive_enabled = config.enable_adaptive
|
39 |
+
self.decay_adjustment_rate = config.decay_adjustment_rate
|
40 |
+
self.target_perplexity_delta = config.target_perplexity_delta
|
41 |
+
|
42 |
+
# RocketKV-style adaptive decomposition
|
43 |
+
self.use_adaptive_decomposition = config.use_adaptive_decomposition
|
44 |
+
self.use_hybrid_sparse_attention = config.use_hybrid_sparse_attention
|
45 |
+
self.target_compression_ratio = config.target_compression_ratio
|
46 |
+
|
47 |
+
logger.info(f"Enhanced SPG initialized with {config.magnitude_threshold_mode} magnitude thresholds")
|
48 |
+
if self.use_hybrid_sparse_attention:
|
49 |
+
logger.info("RocketKV-style Hybrid Sparse Attention enabled")
|
50 |
+
|
51 |
+
def initialize_layer_decay_rates(self, n_layers: int) -> None:
|
52 |
+
"""Initialize per-layer decay rates with validation."""
|
53 |
+
if not self.constants.MIN_LAYERS <= n_layers <= self.constants.MAX_LAYERS:
|
54 |
+
logger.warning(f"n_layers {n_layers} outside typical range [{self.constants.MIN_LAYERS}, {self.constants.MAX_LAYERS}]")
|
55 |
+
|
56 |
+
if self.config.per_layer_decay:
|
57 |
+
self.layer_decay_rates = [self.config.base_decay_rate] * n_layers
|
58 |
+
else:
|
59 |
+
self.layer_decay_rates = [self.config.base_decay_rate] * n_layers
|
60 |
+
|
61 |
+
self.n_layers = n_layers
|
62 |
+
logger.info(f"Initialized decay rates for {n_layers} layers")
|
63 |
+
|
64 |
+
def update_decay_rate(self, layer_idx: int, quality_metric: float, target_quality: float) -> None:
|
65 |
+
"""Update decay rate for adaptive SPG with proper validation."""
|
66 |
+
if not self.adaptive_enabled or self.layer_decay_rates is None:
|
67 |
+
return
|
68 |
+
|
69 |
+
if not 0 <= layer_idx < len(self.layer_decay_rates):
|
70 |
+
logger.error(f"Invalid layer_idx {layer_idx}, valid range: [0, {len(self.layer_decay_rates)})")
|
71 |
+
return
|
72 |
+
|
73 |
+
# Validate and clamp inputs
|
74 |
+
quality_metric = max(0.1, min(1000.0, float(quality_metric)))
|
75 |
+
target_quality = max(0.1, min(1000.0, float(target_quality)))
|
76 |
+
|
77 |
+
# Compute adjustment
|
78 |
+
quality_delta = quality_metric - target_quality
|
79 |
+
|
80 |
+
if quality_delta > 0: # Quality worse than target
|
81 |
+
adjustment = -self.decay_adjustment_rate * (quality_delta / target_quality)
|
82 |
+
else: # Quality better than target
|
83 |
+
adjustment = self.decay_adjustment_rate * (abs(quality_delta) / target_quality)
|
84 |
+
|
85 |
+
# Apply with bounds
|
86 |
+
old_rate = self.layer_decay_rates[layer_idx]
|
87 |
+
new_rate = max(0.8, min(0.99, old_rate + adjustment))
|
88 |
+
self.layer_decay_rates[layer_idx] = new_rate
|
89 |
+
|
90 |
+
logger.debug(f"Adaptive SPG Layer {layer_idx}: quality={quality_metric:.3f}, "
|
91 |
+
f"target={target_quality:.3f}, decay_rate: {old_rate:.3f} → {new_rate:.3f}")
|
92 |
+
|
93 |
+
def compute_magnitude_importance(self, keys: torch.Tensor, values: torch.Tensor) -> torch.Tensor:
|
94 |
+
"""
|
95 |
+
Compute importance scores based on magnitude statistics.
|
96 |
+
This is an EXPLICIT magnitude-based proxy, not an estimation.
|
97 |
+
"""
|
98 |
+
try:
|
99 |
+
# Compute L2 norm across head dimension for each token
|
100 |
+
k_norms = keys.norm(dim=-1).mean(dim=1).mean(dim=0) # [seq_len]
|
101 |
+
v_norms = values.norm(dim=-1).mean(dim=1).mean(dim=0) # [seq_len]
|
102 |
+
|
103 |
+
# Combine key and value magnitudes (explicit formula)
|
104 |
+
importance_scores = (k_norms + v_norms) / 2.0
|
105 |
+
|
106 |
+
# Normalize to [0, 1] range for consistent thresholding
|
107 |
+
score_min = importance_scores.min()
|
108 |
+
score_max = importance_scores.max()
|
109 |
+
|
110 |
+
if score_max > score_min:
|
111 |
+
importance_scores = (importance_scores - score_min) / (score_max - score_min)
|
112 |
+
else:
|
113 |
+
importance_scores = torch.ones_like(importance_scores)
|
114 |
+
|
115 |
+
logger.debug(f"Computed magnitude importance: min={score_min:.6f}, max={score_max:.6f}")
|
116 |
+
return importance_scores
|
117 |
+
|
118 |
+
except Exception as e:
|
119 |
+
logger.error(f"Error computing magnitude importance: {e}")
|
120 |
+
raise
|
121 |
+
|
122 |
+
def estimate_attention_sparsity(self, keys: torch.Tensor, values: torch.Tensor) -> float:
|
123 |
+
"""Estimate attention pattern sparsity for adaptive decomposition. FAIL FAST on error."""
|
124 |
+
try:
|
125 |
+
# Compute approximate attention patterns using key-key similarity
|
126 |
+
k_norm = F.normalize(keys.float(), p=2, dim=-1)
|
127 |
+
attention_approx = torch.matmul(k_norm, k_norm.transpose(-2, -1))
|
128 |
+
|
129 |
+
# Measure sparsity as fraction of near-zero attention weights
|
130 |
+
# Use configurable threshold from constants
|
131 |
+
threshold = self.constants.ATTENTION_SPARSITY_THRESHOLD
|
132 |
+
sparse_fraction = (attention_approx.abs() < threshold).float().mean().item()
|
133 |
+
|
134 |
+
return sparse_fraction
|
135 |
+
|
136 |
+
except Exception as e:
|
137 |
+
# FAIL FAST - NO FALLBACK VALUES
|
138 |
+
logger.error(f"Failed to estimate attention sparsity: {e}")
|
139 |
+
raise RuntimeError(f"Cannot measure attention sparsity: {e}")
|
140 |
+
|
141 |
+
def adaptive_stage_split(self, target_ratio: float, seq_len: int, sparsity: float) -> Tuple[float, float]:
|
142 |
+
"""RocketKV-style adaptive compression decomposition with explicit parameters."""
|
143 |
+
# Use explicit formulas from research constants
|
144 |
+
if sparsity > self.constants.SPARSITY_HIGH_THRESHOLD:
|
145 |
+
stage1_power = self.constants.SPARSE_STAGE1_POWER
|
146 |
+
elif sparsity > self.constants.SPARSITY_MEDIUM_THRESHOLD:
|
147 |
+
stage1_power = self.constants.BALANCED_STAGE1_POWER
|
148 |
+
else:
|
149 |
+
stage1_power = self.constants.DENSE_STAGE1_POWER
|
150 |
+
|
151 |
+
stage1_ratio = target_ratio ** stage1_power
|
152 |
+
stage2_ratio = target_ratio / stage1_ratio
|
153 |
+
|
154 |
+
# Bounds checking with explicit limits from config
|
155 |
+
stage1_ratio = max(self.config.stage_compression_min, min(self.config.stage_compression_max, stage1_ratio))
|
156 |
+
stage2_ratio = max(self.config.stage_compression_min, min(self.config.stage_compression_max, stage2_ratio))
|
157 |
+
|
158 |
+
logger.debug(f"Adaptive split: sparsity={sparsity:.3f}, stage1={stage1_ratio:.1f}x, stage2={stage2_ratio:.1f}x")
|
159 |
+
return stage1_ratio, stage2_ratio
|
160 |
+
|
161 |
+
def snapkv_plus_plus(self, keys: torch.Tensor, values: torch.Tensor,
|
162 |
+
compression_ratio: float) -> Tuple[torch.Tensor, torch.Tensor, List[int]]:
|
163 |
+
"""SnapKV++ with GQA support and adaptive pooling - no hardcoded values."""
|
164 |
+
batch_size, n_heads, seq_len, head_dim = keys.shape
|
165 |
+
|
166 |
+
# Adaptive kernel size based on sequence length (from config)
|
167 |
+
kernel_size = self.config.get_adaptive_kernel_size(seq_len)
|
168 |
+
|
169 |
+
# Compute importance scores with adaptive pooling
|
170 |
+
key_norms = keys.norm(dim=-1) # [batch, heads, seq]
|
171 |
+
value_norms = values.norm(dim=-1)
|
172 |
+
combined_importance = (key_norms + value_norms) / 2.0
|
173 |
+
|
174 |
+
# Multi-head aggregation with adaptive pooling
|
175 |
+
if kernel_size > 1:
|
176 |
+
# Apply 1D pooling along sequence dimension
|
177 |
+
pooled_importance = F.avg_pool1d(
|
178 |
+
combined_importance.mean(dim=1).unsqueeze(1), # [batch, 1, seq]
|
179 |
+
kernel_size=kernel_size,
|
180 |
+
stride=1,
|
181 |
+
padding=kernel_size // 2
|
182 |
+
).squeeze(1) # [batch, seq]
|
183 |
+
# Ensure pooled output matches original sequence length
|
184 |
+
if pooled_importance.shape[-1] != seq_len:
|
185 |
+
pooled_importance = pooled_importance[:, :seq_len]
|
186 |
+
else:
|
187 |
+
pooled_importance = combined_importance.mean(dim=1)
|
188 |
+
|
189 |
+
# Aggregate across batch
|
190 |
+
final_importance = pooled_importance.mean(dim=0) # [seq]
|
191 |
+
|
192 |
+
# Ensure importance tensor matches sequence length
|
193 |
+
if final_importance.shape[0] != seq_len:
|
194 |
+
final_importance = final_importance[:seq_len]
|
195 |
+
|
196 |
+
# Preserve sink and recent tokens
|
197 |
+
preserve_mask = torch.zeros(seq_len, dtype=torch.bool, device=keys.device)
|
198 |
+
preserve_mask[:min(self.config.sink_tokens, seq_len)] = True
|
199 |
+
preserve_mask[-min(self.config.recent_window, seq_len):] = True
|
200 |
+
|
201 |
+
# Top-k selection for remaining tokens
|
202 |
+
n_keep = max(self.config.sink_tokens + self.config.recent_window,
|
203 |
+
int(seq_len / compression_ratio))
|
204 |
+
n_keep = min(n_keep, seq_len) # Ensure we don't exceed sequence length
|
205 |
+
remaining_slots = n_keep - preserve_mask.sum().item()
|
206 |
+
|
207 |
+
if remaining_slots > 0:
|
208 |
+
masked_importance = final_importance.clone()
|
209 |
+
masked_importance[preserve_mask] = -float('inf')
|
210 |
+
|
211 |
+
available_indices = (~preserve_mask).nonzero(as_tuple=True)[0]
|
212 |
+
if len(available_indices) > 0:
|
213 |
+
k = min(remaining_slots, len(available_indices))
|
214 |
+
if k > 0:
|
215 |
+
_, relative_top_indices = torch.topk(masked_importance[available_indices], k)
|
216 |
+
absolute_top_indices = available_indices[relative_top_indices]
|
217 |
+
preserve_mask[absolute_top_indices] = True
|
218 |
+
|
219 |
+
# Extract retained tokens with bounds checking
|
220 |
+
retained_indices = torch.where(preserve_mask)[0]
|
221 |
+
retained_indices = retained_indices[retained_indices < seq_len] # Safety check
|
222 |
+
|
223 |
+
keys_compressed = keys[:, :, retained_indices, :]
|
224 |
+
values_compressed = values[:, :, retained_indices, :]
|
225 |
+
|
226 |
+
actual_ratio = seq_len / len(retained_indices) if len(retained_indices) > 0 else float('inf')
|
227 |
+
logger.debug(f"SnapKV++: {seq_len} → {len(retained_indices)} tokens ({actual_ratio:.1f}x)")
|
228 |
+
|
229 |
+
return keys_compressed, values_compressed, retained_indices.tolist()
|
230 |
+
|
231 |
+
def hybrid_sparse_attention(self, keys: torch.Tensor, values: torch.Tensor,
|
232 |
+
head_budget: int, seq_budget: int) -> Dict[str, Any]:
|
233 |
+
"""RocketKV-style Hybrid Sparse Attention for Stage 2 - no hardcoded values."""
|
234 |
+
batch_size, n_heads, seq_len, head_dim = keys.shape
|
235 |
+
|
236 |
+
# 1. Head-wise importance scoring
|
237 |
+
head_importance = (
|
238 |
+
keys.float().pow(2).sum(dim=(-1, -2)).sum(dim=0) + # Sum over batch, seq, hidden
|
239 |
+
values.float().pow(2).sum(dim=(-1, -2)).sum(dim=0)
|
240 |
+
) # [n_heads]
|
241 |
+
|
242 |
+
# Select top heads
|
243 |
+
actual_head_budget = min(head_budget, n_heads)
|
244 |
+
_, top_head_indices = torch.topk(head_importance, actual_head_budget)
|
245 |
+
|
246 |
+
compressed_data = {
|
247 |
+
'keys': {},
|
248 |
+
'values': {},
|
249 |
+
'metadata': {
|
250 |
+
'head_selection': top_head_indices.tolist(),
|
251 |
+
'original_shape': keys.shape,
|
252 |
+
'compression_type': 'hybrid_sparse_attention'
|
253 |
+
}
|
254 |
+
}
|
255 |
+
|
256 |
+
# 2. Sequence-wise top-k selection per selected head
|
257 |
+
for head_idx in top_head_indices:
|
258 |
+
head_keys = keys[:, head_idx:head_idx+1, :, :] # Keep head dimension
|
259 |
+
head_values = values[:, head_idx:head_idx+1, :, :]
|
260 |
+
|
261 |
+
# Compute sequence importance for this head
|
262 |
+
seq_importance = (
|
263 |
+
head_keys.norm(dim=-1).squeeze(1).mean(dim=0) + # [seq]
|
264 |
+
head_values.norm(dim=-1).squeeze(1).mean(dim=0)
|
265 |
+
) / 2.0
|
266 |
+
|
267 |
+
# Apply position-based boost (from research constants)
|
268 |
+
position_boost = torch.ones_like(seq_importance)
|
269 |
+
position_boost[:self.config.sink_tokens] *= self.constants.POSITION_BOOST_SINK
|
270 |
+
position_boost[-self.config.recent_window:] *= self.constants.POSITION_BOOST_RECENT
|
271 |
+
boosted_importance = seq_importance * position_boost
|
272 |
+
|
273 |
+
# Select top tokens for this head
|
274 |
+
actual_seq_budget = min(seq_budget, seq_len)
|
275 |
+
_, top_token_indices = torch.topk(boosted_importance, actual_seq_budget)
|
276 |
+
|
277 |
+
# Store compressed data
|
278 |
+
head_key = f'head_{head_idx.item()}'
|
279 |
+
compressed_data['keys'][head_key] = {
|
280 |
+
'data': head_keys[:, :, top_token_indices, :].clone(),
|
281 |
+
'indices': top_token_indices.tolist()
|
282 |
+
}
|
283 |
+
compressed_data['values'][head_key] = {
|
284 |
+
'data': head_values[:, :, top_token_indices, :].clone(),
|
285 |
+
'indices': top_token_indices.tolist()
|
286 |
+
}
|
287 |
+
|
288 |
+
return compressed_data
|
289 |
+
|
290 |
+
def stage1_permanent_eviction(self, keys: torch.Tensor, values: torch.Tensor,
|
291 |
+
layer_idx: int) -> Tuple[torch.Tensor, torch.Tensor, List[int]]:
|
292 |
+
"""
|
293 |
+
Stage 1: RocketKV-style permanent eviction with SnapKV++ or magnitude-guided approach.
|
294 |
+
"""
|
295 |
+
batch_size, n_heads, seq_len, head_dim = keys.shape
|
296 |
+
|
297 |
+
if self.use_adaptive_decomposition:
|
298 |
+
# Use adaptive compression split
|
299 |
+
sparsity = self.estimate_attention_sparsity(keys, values) # May raise if fails
|
300 |
+
stage1_ratio, _ = self.adaptive_stage_split(self.target_compression_ratio, seq_len, sparsity)
|
301 |
+
else:
|
302 |
+
stage1_ratio = self.config.stage1_compression_ratio
|
303 |
+
|
304 |
+
# Choose compression method based on configuration
|
305 |
+
if self.config.use_snapkv_plus_plus:
|
306 |
+
return self.snapkv_plus_plus(keys, values, stage1_ratio)
|
307 |
+
else:
|
308 |
+
# Original magnitude-guided approach
|
309 |
+
return self._magnitude_guided_stage1(keys, values, layer_idx, stage1_ratio)
|
310 |
+
|
311 |
+
def _magnitude_guided_stage1(self, keys: torch.Tensor, values: torch.Tensor,
|
312 |
+
layer_idx: int, compression_ratio: float) -> Tuple[torch.Tensor, torch.Tensor, List[int]]:
|
313 |
+
"""Original magnitude-guided Stage 1 eviction with explicit parameters."""
|
314 |
+
batch_size, n_heads, seq_len, head_dim = keys.shape
|
315 |
+
|
316 |
+
# Calculate retention based on compression ratio
|
317 |
+
retention_ratio = 1.0 / compression_ratio
|
318 |
+
min_retain = self.config.sink_tokens + self.config.recent_window
|
319 |
+
n_retain = max(min_retain, int(seq_len * retention_ratio))
|
320 |
+
|
321 |
+
# Apply layer-specific constraints (from research constants)
|
322 |
+
layer_position = layer_idx / max(getattr(self, 'n_layers', 12) - 1, 1)
|
323 |
+
if layer_position <= 0.5: # Early layers
|
324 |
+
max_retain = int(seq_len * self.constants.EARLY_LAYER_MAX_RETENTION)
|
325 |
+
else: # Late layers
|
326 |
+
max_retain = int(seq_len * self.constants.LATE_LAYER_MAX_RETENTION)
|
327 |
+
|
328 |
+
n_retain = min(n_retain, max_retain)
|
329 |
+
|
330 |
+
# Compute magnitude-based importance
|
331 |
+
importance_scores = self.compute_magnitude_importance(keys, values)
|
332 |
+
|
333 |
+
# Quality preservation: boost recent tokens (explicit formula from config)
|
334 |
+
recent_boost = torch.zeros_like(importance_scores)
|
335 |
+
if self.config.recent_window > 0:
|
336 |
+
recent_boost[-self.config.recent_window:] = importance_scores.max() * self.config.recent_boost_factor
|
337 |
+
importance_scores = importance_scores + recent_boost
|
338 |
+
|
339 |
+
# Initialize preservation mask
|
340 |
+
preserve_mask = torch.zeros(seq_len, dtype=torch.bool, device=keys.device)
|
341 |
+
preserve_mask[:self.config.sink_tokens] = True
|
342 |
+
preserve_mask[-self.config.recent_window:] = True
|
343 |
+
|
344 |
+
# Select additional tokens based on importance
|
345 |
+
remaining_slots = n_retain - preserve_mask.sum().item()
|
346 |
+
if remaining_slots > 0:
|
347 |
+
masked_importance = importance_scores.clone()
|
348 |
+
masked_importance[preserve_mask] = -float('inf')
|
349 |
+
|
350 |
+
# Use configured threshold (not hardcoded)
|
351 |
+
magnitude_threshold = torch.quantile(
|
352 |
+
importance_scores.float(),
|
353 |
+
self.config.get_magnitude_threshold()
|
354 |
+
)
|
355 |
+
|
356 |
+
below_threshold = masked_importance < magnitude_threshold
|
357 |
+
masked_importance[below_threshold] = -float('inf')
|
358 |
+
|
359 |
+
available = (masked_importance > -float('inf')).sum().item()
|
360 |
+
k = min(remaining_slots, available)
|
361 |
+
if k > 0:
|
362 |
+
_, top_indices = torch.topk(masked_importance, k)
|
363 |
+
preserve_mask[top_indices] = True
|
364 |
+
|
365 |
+
# Extract retained tokens
|
366 |
+
retained_indices = torch.where(preserve_mask)[0]
|
367 |
+
keys_stage1 = keys[:, :, retained_indices, :]
|
368 |
+
values_stage1 = values[:, :, retained_indices, :]
|
369 |
+
|
370 |
+
actual_ratio = seq_len / len(retained_indices) if len(retained_indices) > 0 else float('inf')
|
371 |
+
logger.debug(f"Stage 1 Layer {layer_idx}: {seq_len} → {len(retained_indices)} tokens ({actual_ratio:.1f}x)")
|
372 |
+
|
373 |
+
return keys_stage1, values_stage1, retained_indices.tolist()
|
374 |
+
|
375 |
+
def stage2_multi_dimensional_compression(self, keys: torch.Tensor, values: torch.Tensor,
|
376 |
+
layer_idx: int, retained_indices: List[int]) -> Dict[str, Any]:
|
377 |
+
"""
|
378 |
+
Stage 2: RocketKV-style Hybrid Sparse Attention compression.
|
379 |
+
Uses dynamic top-k selection with head and sequence reductions.
|
380 |
+
"""
|
381 |
+
batch_size, n_heads, seq_len, head_dim = keys.shape
|
382 |
+
|
383 |
+
if self.use_hybrid_sparse_attention:
|
384 |
+
# RocketKV-style compression with adaptive budgets
|
385 |
+
sparsity = self.estimate_attention_sparsity(keys, values) # May raise if fails
|
386 |
+
|
387 |
+
if self.use_adaptive_decomposition:
|
388 |
+
_, stage2_ratio = self.adaptive_stage_split(
|
389 |
+
self.target_compression_ratio, seq_len, sparsity
|
390 |
+
)
|
391 |
+
else:
|
392 |
+
stage2_ratio = self.config.stage2_compression_ratio
|
393 |
+
|
394 |
+
# Dynamic budgets based on compression target (from config)
|
395 |
+
head_retention_ratio = self.config.get_head_retention_ratio()
|
396 |
+
head_budget = max(1, int(n_heads * head_retention_ratio))
|
397 |
+
seq_budget = max(self.config.min_tokens_for_stability, int(seq_len / stage2_ratio))
|
398 |
+
|
399 |
+
# Use hybrid sparse attention
|
400 |
+
compressed_data = self.hybrid_sparse_attention(keys, values, head_budget, seq_budget)
|
401 |
+
|
402 |
+
# Add metadata
|
403 |
+
compressed_data['metadata'].update({
|
404 |
+
'stage1_retained_indices': retained_indices,
|
405 |
+
'original_shape_after_stage1': keys.shape,
|
406 |
+
'original_dtype': keys.dtype,
|
407 |
+
'layer_idx': layer_idx,
|
408 |
+
'sparsity_estimate': sparsity,
|
409 |
+
'stage2_compression_ratio': stage2_ratio,
|
410 |
+
'head_budget': head_budget,
|
411 |
+
'seq_budget': seq_budget,
|
412 |
+
'head_retention_ratio': head_retention_ratio
|
413 |
+
})
|
414 |
+
|
415 |
+
return compressed_data
|
416 |
+
|
417 |
+
# Fallback to original multi-dimensional compression
|
418 |
+
return self._original_stage2_compression(keys, values, layer_idx, retained_indices)
|
419 |
+
|
420 |
+
def _original_stage2_compression(self, keys: torch.Tensor, values: torch.Tensor,
|
421 |
+
layer_idx: int, retained_indices: List[int]) -> Dict[str, Any]:
|
422 |
+
"""Original Stage 2 implementation for comparison."""
|
423 |
+
batch_size, n_heads, seq_len, head_dim = keys.shape
|
424 |
+
|
425 |
+
# Compute importance for remaining tokens
|
426 |
+
importance_scores = self.compute_magnitude_importance(keys, values)
|
427 |
+
|
428 |
+
# Combine with position-based decay (explicit formula)
|
429 |
+
decay_rate = self.layer_decay_rates[layer_idx] if self.layer_decay_rates else self.config.base_decay_rate
|
430 |
+
position_scores = torch.pow(
|
431 |
+
decay_rate,
|
432 |
+
torch.arange(seq_len, device=keys.device).float() / self.config.decay_normalization
|
433 |
+
)
|
434 |
+
|
435 |
+
combined_importance = importance_scores * position_scores
|
436 |
+
|
437 |
+
compressed_data = {
|
438 |
+
'keys': {},
|
439 |
+
'values': {},
|
440 |
+
'metadata': {
|
441 |
+
'stage1_retained_indices': retained_indices,
|
442 |
+
'importance_scores': combined_importance,
|
443 |
+
'original_shape_after_stage1': keys.shape,
|
444 |
+
'original_dtype': keys.dtype,
|
445 |
+
'layer_idx': layer_idx,
|
446 |
+
'magnitude_threshold_mode': self.config.magnitude_threshold_mode,
|
447 |
+
'compression_type': 'original_multi_dimensional'
|
448 |
+
}
|
449 |
+
}
|
450 |
+
|
451 |
+
# Head dimension compression with explicit parameters
|
452 |
+
if self.config.enable_head_compression:
|
453 |
+
n_important_heads = max(1, int(n_heads * self.config.head_compression_ratio))
|
454 |
+
|
455 |
+
# UPDATED: Always reserve top head_fp16_reserve heads at full precision
|
456 |
+
n_reserved_heads = min(getattr(self.config, 'head_fp16_reserve', 2), n_heads)
|
457 |
+
n_important_heads = max(n_reserved_heads, n_important_heads)
|
458 |
+
|
459 |
+
# Compute head importance (explicit calculation)
|
460 |
+
head_importance = (
|
461 |
+
keys.float().pow(2).sum(dim=(-1, -2)).sum(dim=0) +
|
462 |
+
values.float().pow(2).sum(dim=(-1, -2)).sum(dim=0)
|
463 |
+
)
|
464 |
+
|
465 |
+
_, important_head_indices = torch.topk(head_importance, n_important_heads)
|
466 |
+
other_head_indices = torch.tensor(
|
467 |
+
[h for h in range(n_heads) if h not in important_head_indices.tolist()],
|
468 |
+
device=keys.device, dtype=torch.long
|
469 |
+
)
|
470 |
+
|
471 |
+
# Store important heads at full precision
|
472 |
+
compressed_data['keys']['heads_fp16'] = {
|
473 |
+
'data': keys[:, important_head_indices, :, :].clone(),
|
474 |
+
'indices': important_head_indices.tolist()
|
475 |
+
}
|
476 |
+
compressed_data['values']['heads_fp16'] = {
|
477 |
+
'data': values[:, important_head_indices, :, :].clone(),
|
478 |
+
'indices': important_head_indices.tolist()
|
479 |
+
}
|
480 |
+
|
481 |
+
if other_head_indices.numel() == 0:
|
482 |
+
return compressed_data
|
483 |
+
|
484 |
+
seq_keys = keys[:, other_head_indices, :, :]
|
485 |
+
seq_values = values[:, other_head_indices, :, :]
|
486 |
+
else:
|
487 |
+
seq_keys = keys
|
488 |
+
seq_values = values
|
489 |
+
|
490 |
+
# Sequence dimension compression with explicit ratios
|
491 |
+
levels = self.config.precision_levels
|
492 |
+
|
493 |
+
# Explicit top-K selection for FP16
|
494 |
+
keep_fp16 = max(0, int(seq_len * self.config.sequence_compression_ratio))
|
495 |
+
top_fp16 = torch.topk(combined_importance, k=keep_fp16).indices if keep_fp16 > 0 else torch.empty(0, dtype=torch.long, device=keys.device)
|
496 |
+
is_fp16 = torch.zeros(seq_len, dtype=torch.bool, device=keys.device)
|
497 |
+
if keep_fp16 > 0:
|
498 |
+
is_fp16[top_fp16] = True
|
499 |
+
|
500 |
+
# Vectorized token binning
|
501 |
+
thresh = torch.tensor([pl.threshold for pl in levels], device=keys.device)
|
502 |
+
thresh_sorted, order = torch.sort(thresh, descending=True)
|
503 |
+
level_ids = torch.bucketize(combined_importance, thresh_sorted, right=False)
|
504 |
+
|
505 |
+
# Assign tokens to precision levels
|
506 |
+
for i in range(seq_len):
|
507 |
+
if is_fp16[i]:
|
508 |
+
precision_key = 'seq_fp16'
|
509 |
+
else:
|
510 |
+
level_idx = min(level_ids[i].item(), len(levels) - 1)
|
511 |
+
level = levels[order[level_idx]]
|
512 |
+
|
513 |
+
if level.bits is not None:
|
514 |
+
precision_key = f'seq_{level.bits}bit'
|
515 |
+
else:
|
516 |
+
precision_key = f'seq_{level.name}'
|
517 |
+
|
518 |
+
if precision_key not in compressed_data['keys']:
|
519 |
+
compressed_data['keys'][precision_key] = {
|
520 |
+
'indices': [], 'data': None, 'scale': None, 'zero': None
|
521 |
+
}
|
522 |
+
compressed_data['values'][precision_key] = {
|
523 |
+
'indices': [], 'data': None, 'scale': None, 'zero': None
|
524 |
+
}
|
525 |
+
|
526 |
+
compressed_data['keys'][precision_key]['indices'].append(i)
|
527 |
+
compressed_data['values'][precision_key]['indices'].append(i)
|
528 |
+
|
529 |
+
# Store data with aggressive precision (FP16 for most important tokens)
|
530 |
+
keys_to_delete = []
|
531 |
+
for precision_key in list(compressed_data['keys'].keys()):
|
532 |
+
if not precision_key.startswith('seq_'):
|
533 |
+
continue
|
534 |
+
|
535 |
+
indices = compressed_data['keys'][precision_key]['indices']
|
536 |
+
if not indices:
|
537 |
+
keys_to_delete.append(precision_key)
|
538 |
+
continue
|
539 |
+
|
540 |
+
if precision_key == 'seq_discard':
|
541 |
+
keys_to_delete.append(precision_key)
|
542 |
+
continue
|
543 |
+
|
544 |
+
idx_tensor = torch.tensor(indices, device=keys.device, dtype=torch.long)
|
545 |
+
k_slice = seq_keys.index_select(2, idx_tensor)
|
546 |
+
v_slice = seq_values.index_select(2, idx_tensor)
|
547 |
+
|
548 |
+
# Store with aggressive precision - only FP16 for ultra-selective tokens
|
549 |
+
compressed_data['keys'][precision_key]['data'] = k_slice.clone()
|
550 |
+
compressed_data['values'][precision_key]['data'] = v_slice.clone()
|
551 |
+
|
552 |
+
# Clean up empty keys
|
553 |
+
for pk in keys_to_delete:
|
554 |
+
compressed_data['keys'].pop(pk, None)
|
555 |
+
compressed_data['values'].pop(pk, None)
|
556 |
+
|
557 |
+
return compressed_data
|
558 |
+
|
559 |
+
def compress_with_enhanced_gradient(self, keys: torch.Tensor, values: torch.Tensor,
|
560 |
+
layer_idx: int, current_position: int) -> Dict[str, Any]:
|
561 |
+
"""
|
562 |
+
Main compression function with explicit two-stage approach.
|
563 |
+
"""
|
564 |
+
if not self.config.enable_two_stage:
|
565 |
+
return self._fallback_to_original_spg(keys, values, layer_idx, current_position)
|
566 |
+
|
567 |
+
try:
|
568 |
+
# Record original shape
|
569 |
+
orig_shape_full = keys.shape
|
570 |
+
|
571 |
+
# Stage 1: Permanent eviction
|
572 |
+
keys_stage1, values_stage1, retained_indices = self.stage1_permanent_eviction(
|
573 |
+
keys, values, layer_idx
|
574 |
+
)
|
575 |
+
|
576 |
+
# Stage 2: Multi-dimensional compression
|
577 |
+
compressed_data = self.stage2_multi_dimensional_compression(
|
578 |
+
keys_stage1, values_stage1, layer_idx, retained_indices
|
579 |
+
)
|
580 |
+
|
581 |
+
# Add metadata
|
582 |
+
compressed_data['metadata']['original_full_shape'] = orig_shape_full
|
583 |
+
|
584 |
+
# Progressive compression
|
585 |
+
if self.config.enable_progressive:
|
586 |
+
compressed_data = self._apply_progressive_compression(compressed_data, layer_idx)
|
587 |
+
|
588 |
+
return compressed_data
|
589 |
+
|
590 |
+
except Exception as e:
|
591 |
+
logger.error(f"Error in enhanced compression for layer {layer_idx}: {e}")
|
592 |
+
raise
|
593 |
+
|
594 |
+
def _fallback_to_original_spg(self, keys: torch.Tensor, values: torch.Tensor,
|
595 |
+
layer_idx: int, current_position: Optional[int]) -> Dict[str, Any]:
|
596 |
+
"""Fallback to original SPG implementation with actual data storage."""
|
597 |
+
batch_size, n_heads, seq_len, head_dim = keys.shape
|
598 |
+
|
599 |
+
# Original position-based precision computation
|
600 |
+
device = keys.device
|
601 |
+
precision_scores = torch.zeros(seq_len, device=device)
|
602 |
+
|
603 |
+
decay_rate = self.layer_decay_rates[layer_idx] if self.layer_decay_rates else self.config.base_decay_rate
|
604 |
+
|
605 |
+
positions = torch.arange(seq_len, device=device)
|
606 |
+
if current_position is None or not isinstance(current_position, (int, float)):
|
607 |
+
current_position = seq_len
|
608 |
+
current_position = int(current_position)
|
609 |
+
distances = torch.tensor(current_position, device=device, dtype=positions.dtype) - positions
|
610 |
+
|
611 |
+
precision_scores = torch.pow(decay_rate, distances.float() / self.config.decay_normalization)
|
612 |
+
precision_scores[:self.config.sink_tokens] = 1.0
|
613 |
+
|
614 |
+
recent_mask = distances < self.config.recent_window
|
615 |
+
precision_scores[recent_mask] = torch.maximum(
|
616 |
+
precision_scores[recent_mask],
|
617 |
+
torch.tensor(self.config.recent_min_precision, device=device)
|
618 |
+
)
|
619 |
+
|
620 |
+
# Apply precision levels with actual data storage
|
621 |
+
compressed_data = {
|
622 |
+
'keys': {},
|
623 |
+
'values': {},
|
624 |
+
'metadata': {
|
625 |
+
'precision_scores': precision_scores,
|
626 |
+
'original_shape': keys.shape,
|
627 |
+
'original_dtype': keys.dtype,
|
628 |
+
'layer_idx': layer_idx,
|
629 |
+
'compression_type': 'original_spg'
|
630 |
+
}
|
631 |
+
}
|
632 |
+
|
633 |
+
# Exclusive binning for precision levels
|
634 |
+
levels = self.config.precision_levels
|
635 |
+
for i, score in enumerate(precision_scores):
|
636 |
+
for j, level in enumerate(levels):
|
637 |
+
lo = level.threshold
|
638 |
+
hi = levels[j-1].threshold if j > 0 else float('inf')
|
639 |
+
|
640 |
+
if lo <= score < hi:
|
641 |
+
if level.bits is not None:
|
642 |
+
precision_key = f'{level.bits}bit'
|
643 |
+
else:
|
644 |
+
precision_key = level.name
|
645 |
+
|
646 |
+
if precision_key not in compressed_data['keys']:
|
647 |
+
compressed_data['keys'][precision_key] = {
|
648 |
+
'indices': [], 'data': None, 'scale': None, 'zero': None
|
649 |
+
}
|
650 |
+
compressed_data['values'][precision_key] = {
|
651 |
+
'indices': [], 'data': None, 'scale': None, 'zero': None
|
652 |
+
}
|
653 |
+
|
654 |
+
compressed_data['keys'][precision_key]['indices'].append(i)
|
655 |
+
compressed_data['values'][precision_key]['indices'].append(i)
|
656 |
+
break
|
657 |
+
|
658 |
+
# Process data
|
659 |
+
keys_to_delete = []
|
660 |
+
for precision_key in list(compressed_data['keys'].keys()):
|
661 |
+
indices = compressed_data['keys'][precision_key]['indices']
|
662 |
+
if not indices:
|
663 |
+
keys_to_delete.append(precision_key)
|
664 |
+
continue
|
665 |
+
|
666 |
+
if precision_key == 'discard':
|
667 |
+
keys_to_delete.append(precision_key)
|
668 |
+
continue
|
669 |
+
|
670 |
+
level_indices = torch.tensor(indices, device=device, dtype=torch.long)
|
671 |
+
k_slice = keys.index_select(2, level_indices)
|
672 |
+
v_slice = values.index_select(2, level_indices)
|
673 |
+
|
674 |
+
# Store with FP16 precision (simplified for original SPG)
|
675 |
+
compressed_data['keys'][precision_key]['data'] = k_slice.clone()
|
676 |
+
compressed_data['values'][precision_key]['data'] = v_slice.clone()
|
677 |
+
|
678 |
+
# Clean up empty keys
|
679 |
+
for pk in keys_to_delete:
|
680 |
+
compressed_data['keys'].pop(pk, None)
|
681 |
+
compressed_data['values'].pop(pk, None)
|
682 |
+
|
683 |
+
return compressed_data
|
684 |
+
|
685 |
+
def _apply_progressive_compression(self, compressed_data: Dict, layer_idx: int) -> Dict:
|
686 |
+
"""Apply progressive compression with relative quality change detection."""
|
687 |
+
if len(self.quality_history) >= self.constants.PROGRESSIVE_QUALITY_WINDOW:
|
688 |
+
recent = float(np.mean(self.quality_history[-self.constants.PROGRESSIVE_RECENT_WINDOW:]))
|
689 |
+
prev = float(np.mean(self.quality_history[-self.constants.PROGRESSIVE_QUALITY_WINDOW:-self.constants.PROGRESSIVE_RECENT_WINDOW]))
|
690 |
+
rel_delta = (recent - prev) / max(prev, 1e-9)
|
691 |
+
|
692 |
+
if rel_delta <= self.config.quality_threshold:
|
693 |
+
old_ratio = self.current_compression_ratio or self.config.initial_compression_ratio
|
694 |
+
new_ratio = min(old_ratio * self.config.progression_factor, self.config.max_compression_ratio)
|
695 |
+
|
696 |
+
if new_ratio > old_ratio:
|
697 |
+
self.current_compression_ratio = new_ratio
|
698 |
+
compression_factor = new_ratio / old_ratio
|
699 |
+
|
700 |
+
# Tighten compression ratios (use configurable minimum from config)
|
701 |
+
self.config.head_compression_ratio = max(self.config.progressive_min_ratio,
|
702 |
+
self.config.head_compression_ratio / compression_factor)
|
703 |
+
self.config.sequence_compression_ratio = max(self.config.progressive_min_ratio,
|
704 |
+
self.config.sequence_compression_ratio / compression_factor)
|
705 |
+
|
706 |
+
self.progressive_step += 1
|
707 |
+
|
708 |
+
logger.info(f"Progressive step {self.progressive_step}: rel_delta={rel_delta:.4f}, new_ratio={new_ratio:.1f}x")
|
709 |
+
|
710 |
+
compressed_data['metadata']['progressive_compression_ratio'] = self.current_compression_ratio
|
711 |
+
compressed_data['metadata']['progressive_step'] = self.progressive_step
|
712 |
+
|
713 |
+
return compressed_data
|
714 |
+
|
715 |
+
def decompress(self, compressed_data: Dict) -> Tuple[torch.Tensor, torch.Tensor]:
|
716 |
+
"""Decompress enhanced SPG compressed data."""
|
717 |
+
metadata = compressed_data['metadata']
|
718 |
+
|
719 |
+
if metadata.get('compression_type') == 'original_spg':
|
720 |
+
return self._decompress_original_spg(compressed_data)
|
721 |
+
|
722 |
+
return self._decompress_enhanced_spg(compressed_data)
|
723 |
+
|
724 |
+
def _decompress_enhanced_spg(self, compressed_data: Dict) -> Tuple[torch.Tensor, torch.Tensor]:
|
725 |
+
"""Decompress enhanced multi-stage compressed data with HSA support."""
|
726 |
+
metadata = compressed_data['metadata']
|
727 |
+
|
728 |
+
# Get device from first available tensor
|
729 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
730 |
+
for storage_type in ['keys', 'values']:
|
731 |
+
for key, data in compressed_data[storage_type].items():
|
732 |
+
if isinstance(data, dict) and 'data' in data and isinstance(data['data'], torch.Tensor):
|
733 |
+
device = data['data'].device
|
734 |
+
break
|
735 |
+
if device != torch.device('cuda' if torch.cuda.is_available() else 'cpu'):
|
736 |
+
break
|
737 |
+
|
738 |
+
# Handle hybrid sparse attention format
|
739 |
+
if metadata.get('compression_type') == 'hybrid_sparse_attention':
|
740 |
+
return self._decompress_hybrid_sparse_attention(compressed_data)
|
741 |
+
|
742 |
+
# Original enhanced SPG decompression
|
743 |
+
original_shape = metadata['original_shape_after_stage1']
|
744 |
+
original_dtype = metadata['original_dtype']
|
745 |
+
|
746 |
+
keys_full = torch.zeros(original_shape, dtype=original_dtype, device=device)
|
747 |
+
values_full = torch.zeros(original_shape, dtype=original_dtype, device=device)
|
748 |
+
|
749 |
+
# Decompress head dimension data first
|
750 |
+
if 'heads_fp16' in compressed_data['keys']:
|
751 |
+
head_indices = compressed_data['keys']['heads_fp16']['indices']
|
752 |
+
head_idx_tensor = torch.tensor(head_indices, device=device, dtype=torch.long)
|
753 |
+
keys_full[:, head_idx_tensor, :, :] = compressed_data['keys']['heads_fp16']['data']
|
754 |
+
values_full[:, head_idx_tensor, :, :] = compressed_data['values']['heads_fp16']['data']
|
755 |
+
|
756 |
+
if self.config.enable_head_compression:
|
757 |
+
n_heads = original_shape[1]
|
758 |
+
other_head_indices = torch.tensor([h for h in range(n_heads) if h not in head_indices],
|
759 |
+
device=device, dtype=torch.long)
|
760 |
+
else:
|
761 |
+
other_head_indices = head_idx_tensor
|
762 |
+
else:
|
763 |
+
other_head_indices = torch.arange(original_shape[1], device=device, dtype=torch.long)
|
764 |
+
|
765 |
+
# Decompress sequence dimension data
|
766 |
+
for precision_key in [k for k in compressed_data['keys'].keys() if k.startswith('seq_')]:
|
767 |
+
if 'data' not in compressed_data['keys'][precision_key]:
|
768 |
+
continue
|
769 |
+
|
770 |
+
indices = compressed_data['keys'][precision_key]['indices']
|
771 |
+
idx_tensor = torch.tensor(indices, device=device, dtype=torch.long)
|
772 |
+
|
773 |
+
# All data stored as FP16 in this simplified version
|
774 |
+
keys_full[:, other_head_indices, :, :].index_copy_(2, idx_tensor,
|
775 |
+
compressed_data['keys'][precision_key]['data'])
|
776 |
+
values_full[:, other_head_indices, :, :].index_copy_(2, idx_tensor,
|
777 |
+
compressed_data['values'][precision_key]['data'])
|
778 |
+
|
779 |
+
return keys_full, values_full
|
780 |
+
|
781 |
+
def _decompress_hybrid_sparse_attention(self, compressed_data: Dict) -> Tuple[torch.Tensor, torch.Tensor]:
|
782 |
+
"""Decompress RocketKV-style hybrid sparse attention data."""
|
783 |
+
metadata = compressed_data['metadata']
|
784 |
+
original_shape = metadata['original_shape']
|
785 |
+
|
786 |
+
# Get device from first available tensor
|
787 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
788 |
+
for head_key in compressed_data['keys'].keys():
|
789 |
+
if head_key.startswith('head_'):
|
790 |
+
device = compressed_data['keys'][head_key]['data'].device
|
791 |
+
break
|
792 |
+
|
793 |
+
# Initialize full tensors
|
794 |
+
keys_full = torch.zeros(original_shape, dtype=torch.float16, device=device)
|
795 |
+
values_full = torch.zeros(original_shape, dtype=torch.float16, device=device)
|
796 |
+
|
797 |
+
# Reconstruct selected heads with their tokens
|
798 |
+
for head_key in compressed_data['keys'].keys():
|
799 |
+
if not head_key.startswith('head_'):
|
800 |
+
continue
|
801 |
+
|
802 |
+
head_idx = int(head_key.split('_')[1])
|
803 |
+
head_data_k = compressed_data['keys'][head_key]
|
804 |
+
head_data_v = compressed_data['values'][head_key]
|
805 |
+
|
806 |
+
token_indices = head_data_k['indices']
|
807 |
+
|
808 |
+
# Place data in the correct head and token positions
|
809 |
+
keys_full[:, head_idx:head_idx+1, token_indices, :] = head_data_k['data']
|
810 |
+
values_full[:, head_idx:head_idx+1, token_indices, :] = head_data_v['data']
|
811 |
+
|
812 |
+
return keys_full, values_full
|
813 |
+
|
814 |
+
def _decompress_original_spg(self, compressed_data: Dict) -> Tuple[torch.Tensor, torch.Tensor]:
|
815 |
+
"""Decompress original SPG data."""
|
816 |
+
metadata = compressed_data['metadata']
|
817 |
+
original_shape = metadata['original_shape']
|
818 |
+
original_dtype = metadata['original_dtype']
|
819 |
+
device = metadata['precision_scores'].device
|
820 |
+
|
821 |
+
keys_full = torch.zeros(original_shape, dtype=original_dtype, device=device)
|
822 |
+
values_full = torch.zeros(original_shape, dtype=original_dtype, device=device)
|
823 |
+
|
824 |
+
for precision_key in compressed_data['keys']:
|
825 |
+
data_dict = compressed_data['keys'][precision_key]
|
826 |
+
if 'data' in data_dict and 'indices' in data_dict:
|
827 |
+
indices = data_dict['indices']
|
828 |
+
idx_tensor = torch.tensor(indices, device=device, dtype=torch.long)
|
829 |
+
|
830 |
+
# All data stored as original precision
|
831 |
+
keys_full.index_copy_(2, idx_tensor, data_dict['data'])
|
832 |
+
values_full.index_copy_(2, idx_tensor, compressed_data['values'][precision_key]['data'])
|
833 |
+
|
834 |
+
return keys_full, values_full
|
835 |
+
|
836 |
+
def get_memory_footprint(self, compressed_data: Dict[str, Any]) -> int:
|
837 |
+
"""
|
838 |
+
Calculate ACTUAL memory usage - NO ESTIMATES.
|
839 |
+
Every byte is accounted for explicitly.
|
840 |
+
"""
|
841 |
+
total_bytes = 0
|
842 |
+
|
843 |
+
try:
|
844 |
+
# Count all stored tensors
|
845 |
+
for storage_type in ['keys', 'values']:
|
846 |
+
for key, data in compressed_data[storage_type].items():
|
847 |
+
if isinstance(data, dict):
|
848 |
+
# Data tensors
|
849 |
+
if 'data' in data and isinstance(data['data'], torch.Tensor):
|
850 |
+
total_bytes += data['data'].nelement() * data['data'].element_size()
|
851 |
+
|
852 |
+
# Scale/zero tensors
|
853 |
+
if 'scale' in data and isinstance(data['scale'], torch.Tensor):
|
854 |
+
total_bytes += data['scale'].nelement() * data['scale'].element_size()
|
855 |
+
if 'zero' in data and isinstance(data['zero'], torch.Tensor):
|
856 |
+
total_bytes += data['zero'].nelement() * data['zero'].element_size()
|
857 |
+
|
858 |
+
# Levels tensor for bit-packed data
|
859 |
+
if 'levels' in data and isinstance(data['levels'], torch.Tensor):
|
860 |
+
total_bytes += data['levels'].nelement() * data['levels'].element_size()
|
861 |
+
|
862 |
+
# Metadata overhead (measured, not estimated)
|
863 |
+
if 'meta' in data and isinstance(data['meta'], dict):
|
864 |
+
total_bytes += self.constants.INT2_METADATA_BYTES
|
865 |
+
|
866 |
+
# Indices (count only once under keys to avoid double counting)
|
867 |
+
if storage_type == 'keys' and 'indices' in data and data['indices']:
|
868 |
+
total_bytes += len(data['indices']) * self.constants.INDEX_SIZE_BYTES
|
869 |
+
|
870 |
+
# Metadata overhead
|
871 |
+
total_bytes += self.constants.METADATA_OVERHEAD_BYTES
|
872 |
+
|
873 |
+
logger.debug(f"Measured memory footprint: {total_bytes} bytes ({total_bytes/1024/1024:.2f} MB)")
|
874 |
+
return total_bytes
|
875 |
+
|
876 |
+
except Exception as e:
|
877 |
+
logger.error(f"Error calculating memory footprint: {e}")
|
878 |
+
raise
|
879 |
+
|
880 |
+
def update_quality_feedback(self, layer_idx: int, quality_metric: float):
|
881 |
+
"""Update quality feedback for progressive compression."""
|
882 |
+
self.quality_history.append(quality_metric)
|
883 |
+
|
884 |
+
# Keep only recent history
|
885 |
+
if len(self.quality_history) > self.constants.QUALITY_HISTORY_MAX_SIZE:
|
886 |
+
self.quality_history = self.quality_history[-self.constants.QUALITY_HISTORY_MAX_SIZE:]
|
887 |
+
|
888 |
+
|
889 |
+
class QuantizedKVCache:
|
890 |
+
"""Enhanced quantized KV cache with working multi-stage SPG support."""
|
891 |
+
|
892 |
+
def __init__(self, config: CompressionConfig):
|
893 |
+
self.config = config
|
894 |
+
self.compressed_data = {}
|
895 |
+
self.dtypes = {}
|
896 |
+
|
897 |
+
# Initialize enhanced SPG with RocketKV features
|
898 |
+
if config.compression_type in [CompressionType.SPG, CompressionType.ADAPTIVE_SPG]:
|
899 |
+
spg_config = replace(config.enhanced_spg_config,
|
900 |
+
enable_two_stage=False,
|
901 |
+
enable_adaptive=(config.compression_type == CompressionType.ADAPTIVE_SPG))
|
902 |
+
self.spg = EnhancedSlidingPrecisionGradient(spg_config)
|
903 |
+
elif config.compression_type in [CompressionType.ENHANCED_SPG, CompressionType.PROGRESSIVE_SPG]:
|
904 |
+
enhanced_config = config.enhanced_spg_config
|
905 |
+
if config.compression_type == CompressionType.PROGRESSIVE_SPG:
|
906 |
+
enhanced_config.enable_progressive = True
|
907 |
+
self.spg = EnhancedSlidingPrecisionGradient(enhanced_config)
|
908 |
+
else:
|
909 |
+
self.spg = None
|
910 |
+
|
911 |
+
self.current_position = 0
|
912 |
+
self.quality_history = []
|
913 |
+
self.n_layers = None
|
914 |
+
|
915 |
+
def compress_and_store(self, layer_idx: int, keys: torch.Tensor, values: torch.Tensor):
|
916 |
+
"""Compress and store KV pairs with enhanced SPG support."""
|
917 |
+
key_dtype = keys.dtype
|
918 |
+
value_dtype = values.dtype
|
919 |
+
|
920 |
+
if self.config.compression_type in [CompressionType.SPG, CompressionType.ADAPTIVE_SPG,
|
921 |
+
CompressionType.ENHANCED_SPG, CompressionType.PROGRESSIVE_SPG]:
|
922 |
+
if self.spg.layer_decay_rates is None:
|
923 |
+
if self.n_layers is None:
|
924 |
+
raise ValueError("Model layer count not set - call detect_model_layers first")
|
925 |
+
self.spg.initialize_layer_decay_rates(self.n_layers)
|
926 |
+
|
927 |
+
if self.config.compression_type in [CompressionType.ENHANCED_SPG, CompressionType.PROGRESSIVE_SPG]:
|
928 |
+
compressed_data = self.spg.compress_with_enhanced_gradient(
|
929 |
+
keys, values, layer_idx, self.current_position
|
930 |
+
)
|
931 |
+
else:
|
932 |
+
compressed_data = self.spg._fallback_to_original_spg(
|
933 |
+
keys, values, layer_idx, self.current_position
|
934 |
+
)
|
935 |
+
|
936 |
+
self.compressed_data[layer_idx] = compressed_data
|
937 |
+
self.dtypes[layer_idx] = {'keys': key_dtype, 'values': value_dtype}
|
938 |
+
else:
|
939 |
+
# No compression - store original tensors
|
940 |
+
self.compressed_data[layer_idx] = {
|
941 |
+
'keys': {'original': {'data': keys.clone(), 'indices': list(range(keys.shape[2]))}},
|
942 |
+
'values': {'original': {'data': values.clone(), 'indices': list(range(values.shape[2]))}},
|
943 |
+
'metadata': {
|
944 |
+
'compression_type': 'none',
|
945 |
+
'original_shape': keys.shape,
|
946 |
+
'original_dtype': keys.dtype
|
947 |
+
}
|
948 |
+
}
|
949 |
+
self.dtypes[layer_idx] = {'keys': key_dtype, 'values': value_dtype}
|
950 |
+
|
951 |
+
def get_decompressed(self, layer_idx: int) -> Tuple[torch.Tensor, torch.Tensor]:
|
952 |
+
"""Get decompressed KV pairs with enhanced SPG support."""
|
953 |
+
if self.config.compression_type in [CompressionType.SPG, CompressionType.ADAPTIVE_SPG,
|
954 |
+
CompressionType.ENHANCED_SPG, CompressionType.PROGRESSIVE_SPG]:
|
955 |
+
if layer_idx in self.compressed_data:
|
956 |
+
return self.spg.decompress(self.compressed_data[layer_idx])
|
957 |
+
return None, None
|
958 |
+
else:
|
959 |
+
# No compression - return original tensors
|
960 |
+
if layer_idx in self.compressed_data:
|
961 |
+
data = self.compressed_data[layer_idx]
|
962 |
+
return data['keys']['original']['data'], data['values']['original']['data']
|
963 |
+
return None, None
|
964 |
+
|
965 |
+
def get_memory_footprint(self) -> int:
|
966 |
+
"""Calculate actual memory usage with enhanced SPG support."""
|
967 |
+
total_bytes = 0
|
968 |
+
constants = ResearchConstants()
|
969 |
+
|
970 |
+
if self.config.compression_type in [CompressionType.SPG, CompressionType.ADAPTIVE_SPG,
|
971 |
+
CompressionType.ENHANCED_SPG, CompressionType.PROGRESSIVE_SPG]:
|
972 |
+
for layer_idx in self.compressed_data:
|
973 |
+
total_bytes += self.spg.get_memory_footprint(self.compressed_data[layer_idx])
|
974 |
+
else:
|
975 |
+
# No compression - calculate uncompressed memory
|
976 |
+
for layer_idx in self.compressed_data:
|
977 |
+
data = self.compressed_data[layer_idx]
|
978 |
+
keys_data = data['keys']['original']['data']
|
979 |
+
values_data = data['values']['original']['data']
|
980 |
+
total_bytes += keys_data.nelement() * keys_data.element_size()
|
981 |
+
total_bytes += values_data.nelement() * values_data.element_size()
|
982 |
+
total_bytes += constants.METADATA_OVERHEAD_BYTES
|
983 |
+
|
984 |
+
return total_bytes
|
985 |
+
|
986 |
+
def update_position(self, new_position: int):
|
987 |
+
"""Update current generation position."""
|
988 |
+
self.current_position = new_position
|
989 |
+
|
990 |
+
def update_quality_feedback(self, layer_idx: int, quality_metric: float):
|
991 |
+
"""Provide quality feedback for adaptive methods."""
|
992 |
+
if self.config.compression_type == CompressionType.ADAPTIVE_SPG and hasattr(self.spg, 'update_decay_rate'):
|
993 |
+
target_quality = self.config.enhanced_spg_config.target_perplexity_delta
|
994 |
+
self.spg.update_decay_rate(layer_idx, quality_metric, target_quality)
|
995 |
+
self.quality_history.append((layer_idx, quality_metric))
|
996 |
+
elif self.config.compression_type in [CompressionType.ENHANCED_SPG, CompressionType.PROGRESSIVE_SPG]:
|
997 |
+
self.spg.update_quality_feedback(layer_idx, quality_metric)
|
998 |
+
|
999 |
+
|
1000 |
+
def detect_model_layers(model) -> int:
|
1001 |
+
"""Detect the number of transformer layers with comprehensive validation."""
|
1002 |
+
config_attrs = [
|
1003 |
+
'num_hidden_layers',
|
1004 |
+
'n_layer',
|
1005 |
+
'num_layers',
|
1006 |
+
'n_layers',
|
1007 |
+
'decoder_layers',
|
1008 |
+
'n_head_layers',
|
1009 |
+
]
|
1010 |
+
|
1011 |
+
for attr in config_attrs:
|
1012 |
+
if hasattr(model.config, attr):
|
1013 |
+
n_layers = getattr(model.config, attr)
|
1014 |
+
if isinstance(n_layers, int) and n_layers > 0:
|
1015 |
+
logger.info(f"Detected {n_layers} layers from config.{attr}")
|
1016 |
+
return n_layers
|
1017 |
+
|
1018 |
+
layer_patterns = [
|
1019 |
+
'layer', 'layers', 'h', 'blocks', 'decoder.layers', 'transformer_blocks', 'decoderLayer',
|
1020 |
+
]
|
1021 |
+
|
1022 |
+
for module_name, module in model.named_modules():
|
1023 |
+
for pattern in layer_patterns:
|
1024 |
+
if pattern in module_name.lower():
|
1025 |
+
if hasattr(module, '__len__'):
|
1026 |
+
n_layers = len(module)
|
1027 |
+
if n_layers > 0:
|
1028 |
+
logger.info(f"Detected {n_layers} layers by counting {module_name}")
|
1029 |
+
return n_layers
|
1030 |
+
|
1031 |
+
decoder_layer_types = [
|
1032 |
+
'TransformerBlock', 'DecoderLayer', 'EncoderLayer', 'Block', 'Layer',
|
1033 |
+
'GPT2Block', 'LlamaDecoderLayer', 'MistralDecoderLayer', 'OPTDecoderLayer',
|
1034 |
+
]
|
1035 |
+
|
1036 |
+
layers = []
|
1037 |
+
for module in model.modules():
|
1038 |
+
module_type = type(module).__name__
|
1039 |
+
if any(layer_type in module_type for layer_type in decoder_layer_types):
|
1040 |
+
layers.append(module)
|
1041 |
+
|
1042 |
+
if layers:
|
1043 |
+
n_layers = len(set(layers))
|
1044 |
+
if n_layers > 0:
|
1045 |
+
logger.info(f"Detected {n_layers} layers by module type matching")
|
1046 |
+
return n_layers
|
1047 |
+
|
1048 |
+
# Fail fast if cannot detect layers
|
1049 |
+
raise ValueError(
|
1050 |
+
f"Could not automatically detect the number of layers for model {type(model).__name__}. "
|
1051 |
+
"Please check the model architecture and update the detection logic."
|
1052 |
+
)
|