Update utils/visualization.py
Browse files- utils/visualization.py +375 -34
utils/visualization.py
CHANGED
@@ -1,15 +1,18 @@
|
|
1 |
import plotly.graph_objects as go
|
2 |
import plotly.express as px
|
|
|
|
|
3 |
import networkx as nx
|
4 |
import torch
|
5 |
import numpy as np
|
|
|
6 |
|
7 |
class GraphVisualizer:
|
8 |
-
"""
|
9 |
|
10 |
@staticmethod
|
11 |
-
def create_graph_plot(data, max_nodes=500):
|
12 |
-
"""Create interactive graph visualization"""
|
13 |
try:
|
14 |
# Limit nodes for performance
|
15 |
num_nodes = min(data.num_nodes, max_nodes)
|
@@ -29,30 +32,71 @@ class GraphVisualizer:
|
|
29 |
# Add isolated nodes
|
30 |
G.add_nodes_from(range(num_nodes))
|
31 |
|
32 |
-
#
|
33 |
-
if
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
else:
|
36 |
-
pos = nx.spring_layout(G
|
37 |
|
38 |
-
# Node colors
|
39 |
if hasattr(data, 'y') and data.y is not None:
|
40 |
node_colors = data.y.cpu().numpy()[:num_nodes]
|
|
|
|
|
41 |
else:
|
42 |
node_colors = [0] * num_nodes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# Create edge traces
|
45 |
edge_x, edge_y = [], []
|
|
|
|
|
46 |
for edge in G.edges():
|
47 |
if edge[0] in pos and edge[1] in pos:
|
48 |
x0, y0 = pos[edge[0]]
|
49 |
x1, y1 = pos[edge[1]]
|
50 |
edge_x.extend([x0, x1, None])
|
51 |
edge_y.extend([y0, y1, None])
|
|
|
52 |
|
53 |
# Create node traces
|
54 |
-
node_x = [
|
55 |
-
node_y = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
fig = go.Figure()
|
58 |
|
@@ -60,10 +104,11 @@ class GraphVisualizer:
|
|
60 |
if edge_x:
|
61 |
fig.add_trace(go.Scatter(
|
62 |
x=edge_x, y=edge_y,
|
63 |
-
line=dict(width=0.
|
64 |
hoverinfo='none',
|
65 |
mode='lines',
|
66 |
-
name='Edges'
|
|
|
67 |
))
|
68 |
|
69 |
# Add nodes
|
@@ -71,24 +116,43 @@ class GraphVisualizer:
|
|
71 |
x=node_x, y=node_y,
|
72 |
mode='markers',
|
73 |
hoverinfo='text',
|
74 |
-
|
|
|
75 |
marker=dict(
|
76 |
-
size=
|
77 |
color=node_colors[:len(node_x)],
|
78 |
colorscale='Viridis',
|
79 |
-
line=dict(width=
|
|
|
80 |
),
|
81 |
-
name='Nodes'
|
|
|
82 |
))
|
83 |
|
84 |
fig.update_layout(
|
85 |
-
title=
|
|
|
|
|
|
|
|
|
86 |
showlegend=False,
|
87 |
hovermode='closest',
|
88 |
margin=dict(b=20, l=5, r=5, t=40),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
90 |
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
91 |
-
plot_bgcolor='white'
|
|
|
|
|
92 |
)
|
93 |
|
94 |
return fig
|
@@ -100,45 +164,96 @@ class GraphVisualizer:
|
|
100 |
text=f"Visualization error: {str(e)}",
|
101 |
x=0.5, y=0.5,
|
102 |
xref="paper", yref="paper",
|
103 |
-
showarrow=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
)
|
105 |
return fig
|
106 |
|
107 |
@staticmethod
|
108 |
def create_metrics_plot(metrics):
|
109 |
-
"""Create metrics visualization"""
|
110 |
try:
|
|
|
111 |
metric_names = []
|
112 |
metric_values = []
|
113 |
|
114 |
for key, value in metrics.items():
|
115 |
-
if isinstance(value, (int, float)) and key
|
116 |
-
|
117 |
-
|
|
|
118 |
|
119 |
if metric_names:
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
go.Bar(
|
122 |
x=metric_names,
|
123 |
y=metric_values,
|
124 |
-
marker_color=
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
fig.update_layout(
|
129 |
-
title=
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
133 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
else:
|
135 |
fig = go.Figure()
|
136 |
fig.add_annotation(
|
137 |
-
text="No metrics to display",
|
138 |
x=0.5, y=0.5,
|
139 |
xref="paper", yref="paper",
|
140 |
-
showarrow=False
|
|
|
141 |
)
|
|
|
142 |
|
143 |
return fig
|
144 |
|
@@ -148,6 +263,232 @@ class GraphVisualizer:
|
|
148 |
text=f"Metrics plot error: {str(e)}",
|
149 |
x=0.5, y=0.5,
|
150 |
xref="paper", yref="paper",
|
151 |
-
showarrow=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
)
|
153 |
return fig
|
|
|
1 |
import plotly.graph_objects as go
|
2 |
import plotly.express as px
|
3 |
+
import plotly.figure_factory as ff
|
4 |
+
from plotly.subplots import make_subplots
|
5 |
import networkx as nx
|
6 |
import torch
|
7 |
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
|
10 |
class GraphVisualizer:
|
11 |
+
"""Advanced graph visualization utilities"""
|
12 |
|
13 |
@staticmethod
|
14 |
+
def create_graph_plot(data, max_nodes=500, layout_algorithm='spring'):
|
15 |
+
"""Create interactive graph visualization with multiple layout options"""
|
16 |
try:
|
17 |
# Limit nodes for performance
|
18 |
num_nodes = min(data.num_nodes, max_nodes)
|
|
|
32 |
# Add isolated nodes
|
33 |
G.add_nodes_from(range(num_nodes))
|
34 |
|
35 |
+
# Choose layout algorithm
|
36 |
+
if layout_algorithm == 'spring':
|
37 |
+
if len(G.nodes()) > 100:
|
38 |
+
pos = nx.spring_layout(G, k=0.5, iterations=20)
|
39 |
+
else:
|
40 |
+
pos = nx.spring_layout(G, k=1, iterations=50)
|
41 |
+
elif layout_algorithm == 'circular':
|
42 |
+
pos = nx.circular_layout(G)
|
43 |
+
elif layout_algorithm == 'kamada_kawai':
|
44 |
+
try:
|
45 |
+
pos = nx.kamada_kawai_layout(G)
|
46 |
+
except:
|
47 |
+
pos = nx.spring_layout(G)
|
48 |
+
elif layout_algorithm == 'spectral':
|
49 |
+
try:
|
50 |
+
pos = nx.spectral_layout(G)
|
51 |
+
except:
|
52 |
+
pos = nx.spring_layout(G)
|
53 |
else:
|
54 |
+
pos = nx.spring_layout(G)
|
55 |
|
56 |
+
# Node colors and sizes
|
57 |
if hasattr(data, 'y') and data.y is not None:
|
58 |
node_colors = data.y.cpu().numpy()[:num_nodes]
|
59 |
+
unique_labels = np.unique(node_colors)
|
60 |
+
color_map = px.colors.qualitative.Set3[:len(unique_labels)]
|
61 |
else:
|
62 |
node_colors = [0] * num_nodes
|
63 |
+
color_map = ['lightblue']
|
64 |
+
|
65 |
+
# Node sizes based on degree
|
66 |
+
node_sizes = []
|
67 |
+
for node in G.nodes():
|
68 |
+
degree = G.degree(node)
|
69 |
+
node_sizes.append(max(5, min(20, 5 + degree)))
|
70 |
|
71 |
# Create edge traces
|
72 |
edge_x, edge_y = [], []
|
73 |
+
edge_info = []
|
74 |
+
|
75 |
for edge in G.edges():
|
76 |
if edge[0] in pos and edge[1] in pos:
|
77 |
x0, y0 = pos[edge[0]]
|
78 |
x1, y1 = pos[edge[1]]
|
79 |
edge_x.extend([x0, x1, None])
|
80 |
edge_y.extend([y0, y1, None])
|
81 |
+
edge_info.append(f"Edge: {edge[0]} - {edge[1]}")
|
82 |
|
83 |
# Create node traces
|
84 |
+
node_x = []
|
85 |
+
node_y = []
|
86 |
+
node_text = []
|
87 |
+
node_info = []
|
88 |
+
|
89 |
+
for node in G.nodes():
|
90 |
+
if node in pos:
|
91 |
+
x, y = pos[node]
|
92 |
+
node_x.append(x)
|
93 |
+
node_y.append(y)
|
94 |
+
|
95 |
+
# Node info
|
96 |
+
degree = G.degree(node)
|
97 |
+
label = node_colors[node] if node < len(node_colors) else 0
|
98 |
+
node_text.append(f"Node {node}")
|
99 |
+
node_info.append(f"Node: {node}<br>Degree: {degree}<br>Label: {label}")
|
100 |
|
101 |
fig = go.Figure()
|
102 |
|
|
|
104 |
if edge_x:
|
105 |
fig.add_trace(go.Scatter(
|
106 |
x=edge_x, y=edge_y,
|
107 |
+
line=dict(width=0.8, color='rgba(125,125,125,0.5)'),
|
108 |
hoverinfo='none',
|
109 |
mode='lines',
|
110 |
+
name='Edges',
|
111 |
+
showlegend=False
|
112 |
))
|
113 |
|
114 |
# Add nodes
|
|
|
116 |
x=node_x, y=node_y,
|
117 |
mode='markers',
|
118 |
hoverinfo='text',
|
119 |
+
hovertext=node_info,
|
120 |
+
text=node_text,
|
121 |
marker=dict(
|
122 |
+
size=node_sizes,
|
123 |
color=node_colors[:len(node_x)],
|
124 |
colorscale='Viridis',
|
125 |
+
line=dict(width=2, color='white'),
|
126 |
+
opacity=0.8
|
127 |
),
|
128 |
+
name='Nodes',
|
129 |
+
showlegend=False
|
130 |
))
|
131 |
|
132 |
fig.update_layout(
|
133 |
+
title=dict(
|
134 |
+
text=f'Graph Visualization ({num_nodes} nodes, {len(edge_list)} edges)',
|
135 |
+
x=0.5,
|
136 |
+
font=dict(size=16)
|
137 |
+
),
|
138 |
showlegend=False,
|
139 |
hovermode='closest',
|
140 |
margin=dict(b=20, l=5, r=5, t=40),
|
141 |
+
annotations=[
|
142 |
+
dict(
|
143 |
+
text=f"Layout: {layout_algorithm.title()}",
|
144 |
+
showarrow=False,
|
145 |
+
xref="paper", yref="paper",
|
146 |
+
x=0.005, y=-0.002,
|
147 |
+
xanchor='left', yanchor='bottom',
|
148 |
+
font=dict(color="gray", size=10)
|
149 |
+
)
|
150 |
+
],
|
151 |
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
152 |
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
153 |
+
plot_bgcolor='white',
|
154 |
+
width=800,
|
155 |
+
height=600
|
156 |
)
|
157 |
|
158 |
return fig
|
|
|
164 |
text=f"Visualization error: {str(e)}",
|
165 |
x=0.5, y=0.5,
|
166 |
xref="paper", yref="paper",
|
167 |
+
showarrow=False,
|
168 |
+
font=dict(size=14, color="red")
|
169 |
+
)
|
170 |
+
fig.update_layout(
|
171 |
+
title="Graph Visualization Error",
|
172 |
+
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
173 |
+
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
174 |
+
plot_bgcolor='white'
|
175 |
)
|
176 |
return fig
|
177 |
|
178 |
@staticmethod
|
179 |
def create_metrics_plot(metrics):
|
180 |
+
"""Create comprehensive metrics visualization"""
|
181 |
try:
|
182 |
+
# Filter numeric metrics
|
183 |
metric_names = []
|
184 |
metric_values = []
|
185 |
|
186 |
for key, value in metrics.items():
|
187 |
+
if isinstance(value, (int, float)) and key not in ['error', 'loss']:
|
188 |
+
if not (np.isnan(value) or np.isinf(value)):
|
189 |
+
metric_names.append(key.replace('_', ' ').title())
|
190 |
+
metric_values.append(value)
|
191 |
|
192 |
if metric_names:
|
193 |
+
# Create subplots
|
194 |
+
fig = make_subplots(
|
195 |
+
rows=1, cols=2,
|
196 |
+
subplot_titles=('Performance Metrics', 'Metric Comparison'),
|
197 |
+
specs=[[{"type": "bar"}, {"type": "scatter"}]]
|
198 |
+
)
|
199 |
+
|
200 |
+
# Bar chart
|
201 |
+
colors = px.colors.qualitative.Set3[:len(metric_names)]
|
202 |
+
|
203 |
+
fig.add_trace(
|
204 |
go.Bar(
|
205 |
x=metric_names,
|
206 |
y=metric_values,
|
207 |
+
marker_color=colors,
|
208 |
+
text=[f'{v:.3f}' for v in metric_values],
|
209 |
+
textposition='auto',
|
210 |
+
name='Metrics'
|
211 |
+
),
|
212 |
+
row=1, col=1
|
213 |
+
)
|
214 |
+
|
215 |
+
# Radar chart data
|
216 |
+
fig.add_trace(
|
217 |
+
go.Scatterpolar(
|
218 |
+
r=metric_values,
|
219 |
+
theta=metric_names,
|
220 |
+
fill='toself',
|
221 |
+
name='Performance',
|
222 |
+
line=dict(color='blue')
|
223 |
+
),
|
224 |
+
row=1, col=2
|
225 |
+
)
|
226 |
|
227 |
fig.update_layout(
|
228 |
+
title=dict(
|
229 |
+
text='Model Performance Dashboard',
|
230 |
+
x=0.5,
|
231 |
+
font=dict(size=18)
|
232 |
+
),
|
233 |
+
showlegend=False,
|
234 |
+
height=400
|
235 |
)
|
236 |
+
|
237 |
+
# Update bar chart
|
238 |
+
fig.update_xaxes(title_text="Metrics", row=1, col=1)
|
239 |
+
fig.update_yaxes(title_text="Score", range=[0, 1], row=1, col=1)
|
240 |
+
|
241 |
+
# Update polar chart
|
242 |
+
fig.update_polars(
|
243 |
+
radialaxis=dict(range=[0, 1], showticklabels=True),
|
244 |
+
row=1, col=2
|
245 |
+
)
|
246 |
+
|
247 |
else:
|
248 |
fig = go.Figure()
|
249 |
fig.add_annotation(
|
250 |
+
text="No valid metrics to display",
|
251 |
x=0.5, y=0.5,
|
252 |
xref="paper", yref="paper",
|
253 |
+
showarrow=False,
|
254 |
+
font=dict(size=14)
|
255 |
)
|
256 |
+
fig.update_layout(title="Metrics Dashboard")
|
257 |
|
258 |
return fig
|
259 |
|
|
|
263 |
text=f"Metrics plot error: {str(e)}",
|
264 |
x=0.5, y=0.5,
|
265 |
xref="paper", yref="paper",
|
266 |
+
showarrow=False,
|
267 |
+
font=dict(size=14, color="red")
|
268 |
+
)
|
269 |
+
fig.update_layout(title="Metrics Error")
|
270 |
+
return fig
|
271 |
+
|
272 |
+
@staticmethod
|
273 |
+
def create_training_history_plot(history):
|
274 |
+
"""Create training history visualization"""
|
275 |
+
try:
|
276 |
+
epochs = list(range(len(history['train_loss'])))
|
277 |
+
|
278 |
+
# Create subplots
|
279 |
+
fig = make_subplots(
|
280 |
+
rows=2, cols=2,
|
281 |
+
subplot_titles=('Training Loss', 'Training Accuracy', 'Learning Rate', 'Loss Comparison'),
|
282 |
+
specs=[[{"secondary_y": False}, {"secondary_y": False}],
|
283 |
+
[{"secondary_y": False}, {"secondary_y": False}]]
|
284 |
+
)
|
285 |
+
|
286 |
+
# Training loss
|
287 |
+
fig.add_trace(
|
288 |
+
go.Scatter(
|
289 |
+
x=epochs, y=history['train_loss'],
|
290 |
+
mode='lines', name='Train Loss',
|
291 |
+
line=dict(color='blue', width=2)
|
292 |
+
),
|
293 |
+
row=1, col=1
|
294 |
+
)
|
295 |
+
|
296 |
+
if 'val_loss' in history:
|
297 |
+
fig.add_trace(
|
298 |
+
go.Scatter(
|
299 |
+
x=epochs, y=history['val_loss'],
|
300 |
+
mode='lines', name='Val Loss',
|
301 |
+
line=dict(color='red', width=2)
|
302 |
+
),
|
303 |
+
row=1, col=1
|
304 |
+
)
|
305 |
+
|
306 |
+
# Training accuracy
|
307 |
+
fig.add_trace(
|
308 |
+
go.Scatter(
|
309 |
+
x=epochs, y=history['train_acc'],
|
310 |
+
mode='lines', name='Train Acc',
|
311 |
+
line=dict(color='green', width=2)
|
312 |
+
),
|
313 |
+
row=1, col=2
|
314 |
+
)
|
315 |
+
|
316 |
+
if 'val_acc' in history:
|
317 |
+
fig.add_trace(
|
318 |
+
go.Scatter(
|
319 |
+
x=epochs, y=history['val_acc'],
|
320 |
+
mode='lines', name='Val Acc',
|
321 |
+
line=dict(color='orange', width=2)
|
322 |
+
),
|
323 |
+
row=1, col=2
|
324 |
+
)
|
325 |
+
|
326 |
+
# Learning rate
|
327 |
+
if 'lr' in history:
|
328 |
+
fig.add_trace(
|
329 |
+
go.Scatter(
|
330 |
+
x=epochs, y=history['lr'],
|
331 |
+
mode='lines', name='Learning Rate',
|
332 |
+
line=dict(color='purple', width=2)
|
333 |
+
),
|
334 |
+
row=2, col=1
|
335 |
+
)
|
336 |
+
|
337 |
+
# Loss comparison
|
338 |
+
if 'train_loss' in history and 'val_loss' in history:
|
339 |
+
fig.add_trace(
|
340 |
+
go.Scatter(
|
341 |
+
x=history['train_loss'], y=history['val_loss'],
|
342 |
+
mode='markers', name='Train vs Val Loss',
|
343 |
+
marker=dict(color=epochs, colorscale='Viridis', size=8),
|
344 |
+
text=[f'Epoch {i}' for i in epochs],
|
345 |
+
hovertemplate='Train Loss: %{x:.4f}<br>Val Loss: %{y:.4f}<br>%{text}'
|
346 |
+
),
|
347 |
+
row=2, col=2
|
348 |
+
)
|
349 |
+
|
350 |
+
# Add diagonal line
|
351 |
+
min_loss = min(min(history['train_loss']), min(history['val_loss']))
|
352 |
+
max_loss = max(max(history['train_loss']), max(history['val_loss']))
|
353 |
+
fig.add_trace(
|
354 |
+
go.Scatter(
|
355 |
+
x=[min_loss, max_loss], y=[min_loss, max_loss],
|
356 |
+
mode='lines', name='Perfect Fit',
|
357 |
+
line=dict(color='gray', dash='dash'),
|
358 |
+
showlegend=False
|
359 |
+
),
|
360 |
+
row=2, col=2
|
361 |
+
)
|
362 |
+
|
363 |
+
fig.update_layout(
|
364 |
+
title=dict(
|
365 |
+
text='Training History Dashboard',
|
366 |
+
x=0.5,
|
367 |
+
font=dict(size=18)
|
368 |
+
),
|
369 |
+
height=600,
|
370 |
+
showlegend=True
|
371 |
+
)
|
372 |
+
|
373 |
+
# Update axes
|
374 |
+
fig.update_xaxes(title_text="Epoch", row=1, col=1)
|
375 |
+
fig.update_xaxes(title_text="Epoch", row=1, col=2)
|
376 |
+
fig.update_xaxes(title_text="Epoch", row=2, col=1)
|
377 |
+
fig.update_xaxes(title_text="Train Loss", row=2, col=2)
|
378 |
+
|
379 |
+
fig.update_yaxes(title_text="Loss", row=1, col=1)
|
380 |
+
fig.update_yaxes(title_text="Accuracy", row=1, col=2)
|
381 |
+
fig.update_yaxes(title_text="Learning Rate", type="log", row=2, col=1)
|
382 |
+
fig.update_yaxes(title_text="Val Loss", row=2, col=2)
|
383 |
+
|
384 |
+
return fig
|
385 |
+
|
386 |
+
except Exception as e:
|
387 |
+
fig = go.Figure()
|
388 |
+
fig.add_annotation(
|
389 |
+
text=f"Training history plot error: {str(e)}",
|
390 |
+
x=0.5, y=0.5,
|
391 |
+
xref="paper", yref="paper",
|
392 |
+
showarrow=False,
|
393 |
+
font=dict(size=14, color="red")
|
394 |
+
)
|
395 |
+
return fig
|
396 |
+
|
397 |
+
@staticmethod
|
398 |
+
def create_dataset_stats_plot(dataset_info):
|
399 |
+
"""Create dataset statistics visualization"""
|
400 |
+
try:
|
401 |
+
# Prepare data
|
402 |
+
stats_data = []
|
403 |
+
for key, value in dataset_info.items():
|
404 |
+
if isinstance(value, (int, float)) and not np.isnan(value):
|
405 |
+
stats_data.append({
|
406 |
+
'Metric': key.replace('_', ' ').title(),
|
407 |
+
'Value': value
|
408 |
+
})
|
409 |
+
|
410 |
+
if not stats_data:
|
411 |
+
raise ValueError("No valid statistics to display")
|
412 |
+
|
413 |
+
df = pd.DataFrame(stats_data)
|
414 |
+
|
415 |
+
# Create subplots
|
416 |
+
fig = make_subplots(
|
417 |
+
rows=1, cols=2,
|
418 |
+
subplot_titles=('Dataset Overview', 'Graph Size Distribution'),
|
419 |
+
specs=[[{"type": "bar"}, {"type": "box"}]]
|
420 |
+
)
|
421 |
+
|
422 |
+
# Bar chart of statistics
|
423 |
+
fig.add_trace(
|
424 |
+
go.Bar(
|
425 |
+
x=df['Metric'],
|
426 |
+
y=df['Value'],
|
427 |
+
marker_color=px.colors.qualitative.Pastel1,
|
428 |
+
text=df['Value'],
|
429 |
+
texttemplate='%{text:,.0f}',
|
430 |
+
textposition='auto'
|
431 |
+
),
|
432 |
+
row=1, col=1
|
433 |
+
)
|
434 |
+
|
435 |
+
# Box plot for size distribution (if multiple graphs)
|
436 |
+
if dataset_info.get('num_graphs', 1) > 1:
|
437 |
+
# Simulate distribution based on min/max/avg
|
438 |
+
avg_nodes = dataset_info.get('avg_nodes', 100)
|
439 |
+
min_nodes = dataset_info.get('min_nodes', avg_nodes * 0.5)
|
440 |
+
max_nodes = dataset_info.get('max_nodes', avg_nodes * 1.5)
|
441 |
+
|
442 |
+
# Generate synthetic distribution
|
443 |
+
np.random.seed(42)
|
444 |
+
node_dist = np.random.normal(avg_nodes, (max_nodes - min_nodes) / 4, 100)
|
445 |
+
node_dist = np.clip(node_dist, min_nodes, max_nodes)
|
446 |
+
|
447 |
+
fig.add_trace(
|
448 |
+
go.Box(
|
449 |
+
y=node_dist,
|
450 |
+
name='Node Count',
|
451 |
+
marker_color='lightblue'
|
452 |
+
),
|
453 |
+
row=1, col=2
|
454 |
+
)
|
455 |
+
else:
|
456 |
+
# Single graph - show as point
|
457 |
+
fig.add_trace(
|
458 |
+
go.Scatter(
|
459 |
+
x=['Nodes'],
|
460 |
+
y=[dataset_info.get('avg_nodes', 0)],
|
461 |
+
mode='markers',
|
462 |
+
marker=dict(size=20, color='blue'),
|
463 |
+
name='Node Count'
|
464 |
+
),
|
465 |
+
row=1, col=2
|
466 |
+
)
|
467 |
+
|
468 |
+
fig.update_layout(
|
469 |
+
title=dict(
|
470 |
+
text='Dataset Statistics Dashboard',
|
471 |
+
x=0.5,
|
472 |
+
font=dict(size=16)
|
473 |
+
),
|
474 |
+
height=400,
|
475 |
+
showlegend=False
|
476 |
+
)
|
477 |
+
|
478 |
+
# Update axes
|
479 |
+
fig.update_xaxes(title_text="Metrics", tickangle=45, row=1, col=1)
|
480 |
+
fig.update_yaxes(title_text="Count", row=1, col=1)
|
481 |
+
fig.update_yaxes(title_text="Number of Nodes", row=1, col=2)
|
482 |
+
|
483 |
+
return fig
|
484 |
+
|
485 |
+
except Exception as e:
|
486 |
+
fig = go.Figure()
|
487 |
+
fig.add_annotation(
|
488 |
+
text=f"Dataset stats error: {str(e)}",
|
489 |
+
x=0.5, y=0.5,
|
490 |
+
xref="paper", yref="paper",
|
491 |
+
showarrow=False,
|
492 |
+
font=dict(size=14, color="red")
|
493 |
)
|
494 |
return fig
|