Update data/loader.py
Browse files- data/loader.py +143 -47
data/loader.py
CHANGED
@@ -1,14 +1,13 @@
|
|
1 |
import torch
|
2 |
-
from torch_geometric.datasets import Planetoid, TUDataset
|
3 |
from torch_geometric.loader import DataLoader
|
4 |
-
from torch_geometric.transforms import NormalizeFeatures
|
5 |
import yaml
|
6 |
import os
|
7 |
|
8 |
class GraphDataLoader:
|
9 |
"""
|
10 |
-
Production data loading with
|
11 |
-
Device-safe implementation
|
12 |
"""
|
13 |
|
14 |
def __init__(self, config_path='config.yaml'):
|
@@ -16,7 +15,7 @@ class GraphDataLoader:
|
|
16 |
with open(config_path, 'r') as f:
|
17 |
self.config = yaml.safe_load(f)
|
18 |
else:
|
19 |
-
# Default config
|
20 |
self.config = {
|
21 |
'data': {
|
22 |
'batch_size': 32,
|
@@ -27,70 +26,139 @@ class GraphDataLoader:
|
|
27 |
self.batch_size = self.config['data']['batch_size']
|
28 |
self.test_split = self.config['data']['test_split']
|
29 |
|
|
|
|
|
|
|
|
|
|
|
30 |
def load_node_classification_data(self, dataset_name='Cora'):
|
31 |
-
"""Load
|
32 |
|
33 |
try:
|
34 |
if dataset_name in ['Cora', 'CiteSeer', 'PubMed']:
|
35 |
dataset = Planetoid(
|
36 |
root=f'./data/{dataset_name}',
|
37 |
name=dataset_name,
|
38 |
-
transform=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
)
|
|
|
40 |
else:
|
41 |
-
|
42 |
dataset = Planetoid(
|
43 |
root='./data/Cora',
|
44 |
name='Cora',
|
45 |
-
transform=
|
46 |
)
|
|
|
47 |
except Exception as e:
|
48 |
print(f"Error loading {dataset_name}: {e}")
|
49 |
# Fallback to Cora
|
50 |
dataset = Planetoid(
|
51 |
root='./data/Cora',
|
52 |
name='Cora',
|
53 |
-
transform=
|
54 |
)
|
55 |
-
|
|
|
|
|
|
|
|
|
56 |
return dataset
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
def load_graph_classification_data(self, dataset_name='MUTAG'):
|
59 |
-
"""Load
|
60 |
|
61 |
-
valid_datasets = ['MUTAG', 'ENZYMES', 'PROTEINS', 'COLLAB', 'IMDB-BINARY']
|
62 |
|
63 |
try:
|
64 |
if dataset_name not in valid_datasets:
|
65 |
-
dataset_name = 'MUTAG'
|
66 |
|
67 |
dataset = TUDataset(
|
68 |
root=f'./data/{dataset_name}',
|
69 |
name=dataset_name,
|
70 |
-
transform=
|
71 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
except Exception as e:
|
73 |
print(f"Error loading {dataset_name}: {e}")
|
74 |
-
# Create
|
75 |
from torch_geometric.data import Data
|
76 |
-
dataset = [
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
81 |
|
82 |
return dataset
|
83 |
|
84 |
def create_dataloaders(self, dataset, task_type='node_classification'):
|
85 |
-
"""Create train/val/test splits"""
|
86 |
|
87 |
if task_type == 'node_classification':
|
88 |
-
#
|
89 |
data = dataset[0]
|
90 |
-
return data, None, None
|
91 |
|
92 |
elif task_type == 'graph_classification':
|
93 |
-
#
|
94 |
num_graphs = len(dataset)
|
95 |
indices = torch.randperm(num_graphs)
|
96 |
|
@@ -108,42 +176,70 @@ class GraphDataLoader:
|
|
108 |
return train_loader, val_loader, test_loader
|
109 |
|
110 |
def get_dataset_info(self, dataset):
|
111 |
-
"""Get
|
112 |
try:
|
113 |
if hasattr(dataset, 'num_features'):
|
114 |
num_features = dataset.num_features
|
115 |
else:
|
116 |
-
num_features = dataset[0].x.size(1)
|
117 |
|
118 |
if hasattr(dataset, 'num_classes'):
|
119 |
num_classes = dataset.num_classes
|
120 |
else:
|
121 |
-
if hasattr(dataset[0], 'y'):
|
122 |
if len(dataset) > 1:
|
123 |
-
all_labels =
|
124 |
-
|
|
|
|
|
|
|
125 |
else:
|
126 |
num_classes = len(torch.unique(dataset[0].y))
|
127 |
else:
|
128 |
-
num_classes = 2
|
129 |
|
130 |
num_graphs = len(dataset)
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
except Exception as e:
|
135 |
print(f"Error getting dataset info: {e}")
|
136 |
-
# Return defaults
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from torch_geometric.datasets import Planetoid, TUDataset, Amazon, Coauthor
|
3 |
from torch_geometric.loader import DataLoader
|
4 |
+
from torch_geometric.transforms import NormalizeFeatures, Compose
|
5 |
import yaml
|
6 |
import os
|
7 |
|
8 |
class GraphDataLoader:
|
9 |
"""
|
10 |
+
Production data loading with comprehensive dataset support
|
|
|
11 |
"""
|
12 |
|
13 |
def __init__(self, config_path='config.yaml'):
|
|
|
15 |
with open(config_path, 'r') as f:
|
16 |
self.config = yaml.safe_load(f)
|
17 |
else:
|
18 |
+
# Default config
|
19 |
self.config = {
|
20 |
'data': {
|
21 |
'batch_size': 32,
|
|
|
26 |
self.batch_size = self.config['data']['batch_size']
|
27 |
self.test_split = self.config['data']['test_split']
|
28 |
|
29 |
+
# Standard transform
|
30 |
+
self.transform = Compose([
|
31 |
+
NormalizeFeatures()
|
32 |
+
])
|
33 |
+
|
34 |
def load_node_classification_data(self, dataset_name='Cora'):
|
35 |
+
"""Load node classification datasets with proper splits"""
|
36 |
|
37 |
try:
|
38 |
if dataset_name in ['Cora', 'CiteSeer', 'PubMed']:
|
39 |
dataset = Planetoid(
|
40 |
root=f'./data/{dataset_name}',
|
41 |
name=dataset_name,
|
42 |
+
transform=self.transform
|
43 |
+
)
|
44 |
+
|
45 |
+
elif dataset_name in ['Computers', 'Photo']:
|
46 |
+
dataset = Amazon(
|
47 |
+
root=f'./data/Amazon{dataset_name}',
|
48 |
+
name=dataset_name,
|
49 |
+
transform=self.transform
|
50 |
+
)
|
51 |
+
|
52 |
+
elif dataset_name in ['CS', 'Physics']:
|
53 |
+
dataset = Coauthor(
|
54 |
+
root=f'./data/Coauthor{dataset_name}',
|
55 |
+
name=dataset_name,
|
56 |
+
transform=self.transform
|
57 |
)
|
58 |
+
|
59 |
else:
|
60 |
+
print(f"Unknown dataset {dataset_name}, falling back to Cora")
|
61 |
dataset = Planetoid(
|
62 |
root='./data/Cora',
|
63 |
name='Cora',
|
64 |
+
transform=self.transform
|
65 |
)
|
66 |
+
|
67 |
except Exception as e:
|
68 |
print(f"Error loading {dataset_name}: {e}")
|
69 |
# Fallback to Cora
|
70 |
dataset = Planetoid(
|
71 |
root='./data/Cora',
|
72 |
name='Cora',
|
73 |
+
transform=self.transform
|
74 |
)
|
75 |
+
|
76 |
+
# Ensure proper masks exist
|
77 |
+
data = dataset[0]
|
78 |
+
self._ensure_masks(data)
|
79 |
+
|
80 |
return dataset
|
81 |
|
82 |
+
def _ensure_masks(self, data):
|
83 |
+
"""Ensure train/val/test masks exist"""
|
84 |
+
num_nodes = data.num_nodes
|
85 |
+
|
86 |
+
if not hasattr(data, 'train_mask') or data.train_mask is None:
|
87 |
+
# Create random splits
|
88 |
+
indices = torch.randperm(num_nodes)
|
89 |
+
|
90 |
+
train_size = int(0.6 * num_nodes)
|
91 |
+
val_size = int(0.2 * num_nodes)
|
92 |
+
|
93 |
+
train_mask = torch.zeros(num_nodes, dtype=torch.bool)
|
94 |
+
val_mask = torch.zeros(num_nodes, dtype=torch.bool)
|
95 |
+
test_mask = torch.zeros(num_nodes, dtype=torch.bool)
|
96 |
+
|
97 |
+
train_mask[indices[:train_size]] = True
|
98 |
+
val_mask[indices[train_size:train_size + val_size]] = True
|
99 |
+
test_mask[indices[train_size + val_size:]] = True
|
100 |
+
|
101 |
+
data.train_mask = train_mask
|
102 |
+
data.val_mask = val_mask
|
103 |
+
data.test_mask = test_mask
|
104 |
+
|
105 |
def load_graph_classification_data(self, dataset_name='MUTAG'):
|
106 |
+
"""Load graph classification datasets"""
|
107 |
|
108 |
+
valid_datasets = ['MUTAG', 'ENZYMES', 'PROTEINS', 'COLLAB', 'IMDB-BINARY', 'DD']
|
109 |
|
110 |
try:
|
111 |
if dataset_name not in valid_datasets:
|
112 |
+
dataset_name = 'MUTAG'
|
113 |
|
114 |
dataset = TUDataset(
|
115 |
root=f'./data/{dataset_name}',
|
116 |
name=dataset_name,
|
117 |
+
transform=self.transform
|
118 |
)
|
119 |
+
|
120 |
+
# Handle missing features
|
121 |
+
if dataset[0].x is None:
|
122 |
+
# Use degree as features
|
123 |
+
max_degree = 0
|
124 |
+
for data in dataset:
|
125 |
+
if data.edge_index.shape[1] > 0:
|
126 |
+
degree = torch.zeros(data.num_nodes)
|
127 |
+
degree.index_add_(0, data.edge_index[0], torch.ones(data.edge_index.shape[1]))
|
128 |
+
max_degree = max(max_degree, degree.max().item())
|
129 |
+
|
130 |
+
for data in dataset:
|
131 |
+
if data.edge_index.shape[1] > 0:
|
132 |
+
degree = torch.zeros(data.num_nodes)
|
133 |
+
degree.index_add_(0, data.edge_index[0], torch.ones(data.edge_index.shape[1]))
|
134 |
+
data.x = degree.unsqueeze(1) / max(max_degree, 1)
|
135 |
+
else:
|
136 |
+
data.x = torch.zeros(data.num_nodes, 1)
|
137 |
+
|
138 |
except Exception as e:
|
139 |
print(f"Error loading {dataset_name}: {e}")
|
140 |
+
# Create minimal synthetic dataset
|
141 |
from torch_geometric.data import Data
|
142 |
+
dataset = [
|
143 |
+
Data(
|
144 |
+
x=torch.randn(10, 5),
|
145 |
+
edge_index=torch.randint(0, 10, (2, 20)),
|
146 |
+
y=torch.randint(0, 2, (1,))
|
147 |
+
) for _ in range(100)
|
148 |
+
]
|
149 |
|
150 |
return dataset
|
151 |
|
152 |
def create_dataloaders(self, dataset, task_type='node_classification'):
|
153 |
+
"""Create train/val/test splits with dataloaders"""
|
154 |
|
155 |
if task_type == 'node_classification':
|
156 |
+
# Single graph with masks
|
157 |
data = dataset[0]
|
158 |
+
return data, None, None
|
159 |
|
160 |
elif task_type == 'graph_classification':
|
161 |
+
# Split dataset
|
162 |
num_graphs = len(dataset)
|
163 |
indices = torch.randperm(num_graphs)
|
164 |
|
|
|
176 |
return train_loader, val_loader, test_loader
|
177 |
|
178 |
def get_dataset_info(self, dataset):
|
179 |
+
"""Get comprehensive dataset information"""
|
180 |
try:
|
181 |
if hasattr(dataset, 'num_features'):
|
182 |
num_features = dataset.num_features
|
183 |
else:
|
184 |
+
num_features = dataset[0].x.size(1) if dataset[0].x is not None else 1
|
185 |
|
186 |
if hasattr(dataset, 'num_classes'):
|
187 |
num_classes = dataset.num_classes
|
188 |
else:
|
189 |
+
if hasattr(dataset[0], 'y') and dataset[0].y is not None:
|
190 |
if len(dataset) > 1:
|
191 |
+
all_labels = []
|
192 |
+
for data in dataset:
|
193 |
+
if data.y is not None:
|
194 |
+
all_labels.extend(data.y.flatten().tolist())
|
195 |
+
num_classes = len(set(all_labels)) if all_labels else 2
|
196 |
else:
|
197 |
num_classes = len(torch.unique(dataset[0].y))
|
198 |
else:
|
199 |
+
num_classes = 2
|
200 |
|
201 |
num_graphs = len(dataset)
|
202 |
+
|
203 |
+
# Calculate statistics
|
204 |
+
total_nodes = sum([data.num_nodes for data in dataset])
|
205 |
+
total_edges = sum([data.num_edges for data in dataset])
|
206 |
+
|
207 |
+
avg_nodes = total_nodes / num_graphs
|
208 |
+
avg_edges = total_edges / num_graphs
|
209 |
+
|
210 |
+
# Additional statistics
|
211 |
+
node_counts = [data.num_nodes for data in dataset]
|
212 |
+
edge_counts = [data.num_edges for data in dataset]
|
213 |
+
|
214 |
+
stats = {
|
215 |
+
'num_features': num_features,
|
216 |
+
'num_classes': num_classes,
|
217 |
+
'num_graphs': num_graphs,
|
218 |
+
'avg_nodes': avg_nodes,
|
219 |
+
'avg_edges': avg_edges,
|
220 |
+
'min_nodes': min(node_counts),
|
221 |
+
'max_nodes': max(node_counts),
|
222 |
+
'min_edges': min(edge_counts),
|
223 |
+
'max_edges': max(edge_counts),
|
224 |
+
'total_nodes': total_nodes,
|
225 |
+
'total_edges': total_edges
|
226 |
+
}
|
227 |
|
228 |
except Exception as e:
|
229 |
print(f"Error getting dataset info: {e}")
|
230 |
+
# Return safe defaults
|
231 |
+
stats = {
|
232 |
+
'num_features': 1433,
|
233 |
+
'num_classes': 7,
|
234 |
+
'num_graphs': 1,
|
235 |
+
'avg_nodes': 2708.0,
|
236 |
+
'avg_edges': 10556.0,
|
237 |
+
'min_nodes': 2708,
|
238 |
+
'max_nodes': 2708,
|
239 |
+
'min_edges': 10556,
|
240 |
+
'max_edges': 10556,
|
241 |
+
'total_nodes': 2708,
|
242 |
+
'total_edges': 10556
|
243 |
+
}
|
244 |
+
|
245 |
+
return stats
|