Update data/loader.py
Browse files- data/loader.py +143 -47
data/loader.py
CHANGED
|
@@ -1,14 +1,13 @@
|
|
| 1 |
import torch
|
| 2 |
-
from torch_geometric.datasets import Planetoid, TUDataset
|
| 3 |
from torch_geometric.loader import DataLoader
|
| 4 |
-
from torch_geometric.transforms import NormalizeFeatures
|
| 5 |
import yaml
|
| 6 |
import os
|
| 7 |
|
| 8 |
class GraphDataLoader:
|
| 9 |
"""
|
| 10 |
-
Production data loading with
|
| 11 |
-
Device-safe implementation
|
| 12 |
"""
|
| 13 |
|
| 14 |
def __init__(self, config_path='config.yaml'):
|
|
@@ -16,7 +15,7 @@ class GraphDataLoader:
|
|
| 16 |
with open(config_path, 'r') as f:
|
| 17 |
self.config = yaml.safe_load(f)
|
| 18 |
else:
|
| 19 |
-
# Default config
|
| 20 |
self.config = {
|
| 21 |
'data': {
|
| 22 |
'batch_size': 32,
|
|
@@ -27,70 +26,139 @@ class GraphDataLoader:
|
|
| 27 |
self.batch_size = self.config['data']['batch_size']
|
| 28 |
self.test_split = self.config['data']['test_split']
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def load_node_classification_data(self, dataset_name='Cora'):
|
| 31 |
-
"""Load
|
| 32 |
|
| 33 |
try:
|
| 34 |
if dataset_name in ['Cora', 'CiteSeer', 'PubMed']:
|
| 35 |
dataset = Planetoid(
|
| 36 |
root=f'./data/{dataset_name}',
|
| 37 |
name=dataset_name,
|
| 38 |
-
transform=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
)
|
|
|
|
| 40 |
else:
|
| 41 |
-
|
| 42 |
dataset = Planetoid(
|
| 43 |
root='./data/Cora',
|
| 44 |
name='Cora',
|
| 45 |
-
transform=
|
| 46 |
)
|
|
|
|
| 47 |
except Exception as e:
|
| 48 |
print(f"Error loading {dataset_name}: {e}")
|
| 49 |
# Fallback to Cora
|
| 50 |
dataset = Planetoid(
|
| 51 |
root='./data/Cora',
|
| 52 |
name='Cora',
|
| 53 |
-
transform=
|
| 54 |
)
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
return dataset
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
def load_graph_classification_data(self, dataset_name='MUTAG'):
|
| 59 |
-
"""Load
|
| 60 |
|
| 61 |
-
valid_datasets = ['MUTAG', 'ENZYMES', 'PROTEINS', 'COLLAB', 'IMDB-BINARY']
|
| 62 |
|
| 63 |
try:
|
| 64 |
if dataset_name not in valid_datasets:
|
| 65 |
-
dataset_name = 'MUTAG'
|
| 66 |
|
| 67 |
dataset = TUDataset(
|
| 68 |
root=f'./data/{dataset_name}',
|
| 69 |
name=dataset_name,
|
| 70 |
-
transform=
|
| 71 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
except Exception as e:
|
| 73 |
print(f"Error loading {dataset_name}: {e}")
|
| 74 |
-
# Create
|
| 75 |
from torch_geometric.data import Data
|
| 76 |
-
dataset = [
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
| 81 |
|
| 82 |
return dataset
|
| 83 |
|
| 84 |
def create_dataloaders(self, dataset, task_type='node_classification'):
|
| 85 |
-
"""Create train/val/test splits"""
|
| 86 |
|
| 87 |
if task_type == 'node_classification':
|
| 88 |
-
#
|
| 89 |
data = dataset[0]
|
| 90 |
-
return data, None, None
|
| 91 |
|
| 92 |
elif task_type == 'graph_classification':
|
| 93 |
-
#
|
| 94 |
num_graphs = len(dataset)
|
| 95 |
indices = torch.randperm(num_graphs)
|
| 96 |
|
|
@@ -108,42 +176,70 @@ class GraphDataLoader:
|
|
| 108 |
return train_loader, val_loader, test_loader
|
| 109 |
|
| 110 |
def get_dataset_info(self, dataset):
|
| 111 |
-
"""Get
|
| 112 |
try:
|
| 113 |
if hasattr(dataset, 'num_features'):
|
| 114 |
num_features = dataset.num_features
|
| 115 |
else:
|
| 116 |
-
num_features = dataset[0].x.size(1)
|
| 117 |
|
| 118 |
if hasattr(dataset, 'num_classes'):
|
| 119 |
num_classes = dataset.num_classes
|
| 120 |
else:
|
| 121 |
-
if hasattr(dataset[0], 'y'):
|
| 122 |
if len(dataset) > 1:
|
| 123 |
-
all_labels =
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
| 125 |
else:
|
| 126 |
num_classes = len(torch.unique(dataset[0].y))
|
| 127 |
else:
|
| 128 |
-
num_classes = 2
|
| 129 |
|
| 130 |
num_graphs = len(dataset)
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
except Exception as e:
|
| 135 |
print(f"Error getting dataset info: {e}")
|
| 136 |
-
# Return defaults
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from torch_geometric.datasets import Planetoid, TUDataset, Amazon, Coauthor
|
| 3 |
from torch_geometric.loader import DataLoader
|
| 4 |
+
from torch_geometric.transforms import NormalizeFeatures, Compose
|
| 5 |
import yaml
|
| 6 |
import os
|
| 7 |
|
| 8 |
class GraphDataLoader:
|
| 9 |
"""
|
| 10 |
+
Production data loading with comprehensive dataset support
|
|
|
|
| 11 |
"""
|
| 12 |
|
| 13 |
def __init__(self, config_path='config.yaml'):
|
|
|
|
| 15 |
with open(config_path, 'r') as f:
|
| 16 |
self.config = yaml.safe_load(f)
|
| 17 |
else:
|
| 18 |
+
# Default config
|
| 19 |
self.config = {
|
| 20 |
'data': {
|
| 21 |
'batch_size': 32,
|
|
|
|
| 26 |
self.batch_size = self.config['data']['batch_size']
|
| 27 |
self.test_split = self.config['data']['test_split']
|
| 28 |
|
| 29 |
+
# Standard transform
|
| 30 |
+
self.transform = Compose([
|
| 31 |
+
NormalizeFeatures()
|
| 32 |
+
])
|
| 33 |
+
|
| 34 |
def load_node_classification_data(self, dataset_name='Cora'):
|
| 35 |
+
"""Load node classification datasets with proper splits"""
|
| 36 |
|
| 37 |
try:
|
| 38 |
if dataset_name in ['Cora', 'CiteSeer', 'PubMed']:
|
| 39 |
dataset = Planetoid(
|
| 40 |
root=f'./data/{dataset_name}',
|
| 41 |
name=dataset_name,
|
| 42 |
+
transform=self.transform
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
elif dataset_name in ['Computers', 'Photo']:
|
| 46 |
+
dataset = Amazon(
|
| 47 |
+
root=f'./data/Amazon{dataset_name}',
|
| 48 |
+
name=dataset_name,
|
| 49 |
+
transform=self.transform
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
elif dataset_name in ['CS', 'Physics']:
|
| 53 |
+
dataset = Coauthor(
|
| 54 |
+
root=f'./data/Coauthor{dataset_name}',
|
| 55 |
+
name=dataset_name,
|
| 56 |
+
transform=self.transform
|
| 57 |
)
|
| 58 |
+
|
| 59 |
else:
|
| 60 |
+
print(f"Unknown dataset {dataset_name}, falling back to Cora")
|
| 61 |
dataset = Planetoid(
|
| 62 |
root='./data/Cora',
|
| 63 |
name='Cora',
|
| 64 |
+
transform=self.transform
|
| 65 |
)
|
| 66 |
+
|
| 67 |
except Exception as e:
|
| 68 |
print(f"Error loading {dataset_name}: {e}")
|
| 69 |
# Fallback to Cora
|
| 70 |
dataset = Planetoid(
|
| 71 |
root='./data/Cora',
|
| 72 |
name='Cora',
|
| 73 |
+
transform=self.transform
|
| 74 |
)
|
| 75 |
+
|
| 76 |
+
# Ensure proper masks exist
|
| 77 |
+
data = dataset[0]
|
| 78 |
+
self._ensure_masks(data)
|
| 79 |
+
|
| 80 |
return dataset
|
| 81 |
|
| 82 |
+
def _ensure_masks(self, data):
|
| 83 |
+
"""Ensure train/val/test masks exist"""
|
| 84 |
+
num_nodes = data.num_nodes
|
| 85 |
+
|
| 86 |
+
if not hasattr(data, 'train_mask') or data.train_mask is None:
|
| 87 |
+
# Create random splits
|
| 88 |
+
indices = torch.randperm(num_nodes)
|
| 89 |
+
|
| 90 |
+
train_size = int(0.6 * num_nodes)
|
| 91 |
+
val_size = int(0.2 * num_nodes)
|
| 92 |
+
|
| 93 |
+
train_mask = torch.zeros(num_nodes, dtype=torch.bool)
|
| 94 |
+
val_mask = torch.zeros(num_nodes, dtype=torch.bool)
|
| 95 |
+
test_mask = torch.zeros(num_nodes, dtype=torch.bool)
|
| 96 |
+
|
| 97 |
+
train_mask[indices[:train_size]] = True
|
| 98 |
+
val_mask[indices[train_size:train_size + val_size]] = True
|
| 99 |
+
test_mask[indices[train_size + val_size:]] = True
|
| 100 |
+
|
| 101 |
+
data.train_mask = train_mask
|
| 102 |
+
data.val_mask = val_mask
|
| 103 |
+
data.test_mask = test_mask
|
| 104 |
+
|
| 105 |
def load_graph_classification_data(self, dataset_name='MUTAG'):
|
| 106 |
+
"""Load graph classification datasets"""
|
| 107 |
|
| 108 |
+
valid_datasets = ['MUTAG', 'ENZYMES', 'PROTEINS', 'COLLAB', 'IMDB-BINARY', 'DD']
|
| 109 |
|
| 110 |
try:
|
| 111 |
if dataset_name not in valid_datasets:
|
| 112 |
+
dataset_name = 'MUTAG'
|
| 113 |
|
| 114 |
dataset = TUDataset(
|
| 115 |
root=f'./data/{dataset_name}',
|
| 116 |
name=dataset_name,
|
| 117 |
+
transform=self.transform
|
| 118 |
)
|
| 119 |
+
|
| 120 |
+
# Handle missing features
|
| 121 |
+
if dataset[0].x is None:
|
| 122 |
+
# Use degree as features
|
| 123 |
+
max_degree = 0
|
| 124 |
+
for data in dataset:
|
| 125 |
+
if data.edge_index.shape[1] > 0:
|
| 126 |
+
degree = torch.zeros(data.num_nodes)
|
| 127 |
+
degree.index_add_(0, data.edge_index[0], torch.ones(data.edge_index.shape[1]))
|
| 128 |
+
max_degree = max(max_degree, degree.max().item())
|
| 129 |
+
|
| 130 |
+
for data in dataset:
|
| 131 |
+
if data.edge_index.shape[1] > 0:
|
| 132 |
+
degree = torch.zeros(data.num_nodes)
|
| 133 |
+
degree.index_add_(0, data.edge_index[0], torch.ones(data.edge_index.shape[1]))
|
| 134 |
+
data.x = degree.unsqueeze(1) / max(max_degree, 1)
|
| 135 |
+
else:
|
| 136 |
+
data.x = torch.zeros(data.num_nodes, 1)
|
| 137 |
+
|
| 138 |
except Exception as e:
|
| 139 |
print(f"Error loading {dataset_name}: {e}")
|
| 140 |
+
# Create minimal synthetic dataset
|
| 141 |
from torch_geometric.data import Data
|
| 142 |
+
dataset = [
|
| 143 |
+
Data(
|
| 144 |
+
x=torch.randn(10, 5),
|
| 145 |
+
edge_index=torch.randint(0, 10, (2, 20)),
|
| 146 |
+
y=torch.randint(0, 2, (1,))
|
| 147 |
+
) for _ in range(100)
|
| 148 |
+
]
|
| 149 |
|
| 150 |
return dataset
|
| 151 |
|
| 152 |
def create_dataloaders(self, dataset, task_type='node_classification'):
|
| 153 |
+
"""Create train/val/test splits with dataloaders"""
|
| 154 |
|
| 155 |
if task_type == 'node_classification':
|
| 156 |
+
# Single graph with masks
|
| 157 |
data = dataset[0]
|
| 158 |
+
return data, None, None
|
| 159 |
|
| 160 |
elif task_type == 'graph_classification':
|
| 161 |
+
# Split dataset
|
| 162 |
num_graphs = len(dataset)
|
| 163 |
indices = torch.randperm(num_graphs)
|
| 164 |
|
|
|
|
| 176 |
return train_loader, val_loader, test_loader
|
| 177 |
|
| 178 |
def get_dataset_info(self, dataset):
|
| 179 |
+
"""Get comprehensive dataset information"""
|
| 180 |
try:
|
| 181 |
if hasattr(dataset, 'num_features'):
|
| 182 |
num_features = dataset.num_features
|
| 183 |
else:
|
| 184 |
+
num_features = dataset[0].x.size(1) if dataset[0].x is not None else 1
|
| 185 |
|
| 186 |
if hasattr(dataset, 'num_classes'):
|
| 187 |
num_classes = dataset.num_classes
|
| 188 |
else:
|
| 189 |
+
if hasattr(dataset[0], 'y') and dataset[0].y is not None:
|
| 190 |
if len(dataset) > 1:
|
| 191 |
+
all_labels = []
|
| 192 |
+
for data in dataset:
|
| 193 |
+
if data.y is not None:
|
| 194 |
+
all_labels.extend(data.y.flatten().tolist())
|
| 195 |
+
num_classes = len(set(all_labels)) if all_labels else 2
|
| 196 |
else:
|
| 197 |
num_classes = len(torch.unique(dataset[0].y))
|
| 198 |
else:
|
| 199 |
+
num_classes = 2
|
| 200 |
|
| 201 |
num_graphs = len(dataset)
|
| 202 |
+
|
| 203 |
+
# Calculate statistics
|
| 204 |
+
total_nodes = sum([data.num_nodes for data in dataset])
|
| 205 |
+
total_edges = sum([data.num_edges for data in dataset])
|
| 206 |
+
|
| 207 |
+
avg_nodes = total_nodes / num_graphs
|
| 208 |
+
avg_edges = total_edges / num_graphs
|
| 209 |
+
|
| 210 |
+
# Additional statistics
|
| 211 |
+
node_counts = [data.num_nodes for data in dataset]
|
| 212 |
+
edge_counts = [data.num_edges for data in dataset]
|
| 213 |
+
|
| 214 |
+
stats = {
|
| 215 |
+
'num_features': num_features,
|
| 216 |
+
'num_classes': num_classes,
|
| 217 |
+
'num_graphs': num_graphs,
|
| 218 |
+
'avg_nodes': avg_nodes,
|
| 219 |
+
'avg_edges': avg_edges,
|
| 220 |
+
'min_nodes': min(node_counts),
|
| 221 |
+
'max_nodes': max(node_counts),
|
| 222 |
+
'min_edges': min(edge_counts),
|
| 223 |
+
'max_edges': max(edge_counts),
|
| 224 |
+
'total_nodes': total_nodes,
|
| 225 |
+
'total_edges': total_edges
|
| 226 |
+
}
|
| 227 |
|
| 228 |
except Exception as e:
|
| 229 |
print(f"Error getting dataset info: {e}")
|
| 230 |
+
# Return safe defaults
|
| 231 |
+
stats = {
|
| 232 |
+
'num_features': 1433,
|
| 233 |
+
'num_classes': 7,
|
| 234 |
+
'num_graphs': 1,
|
| 235 |
+
'avg_nodes': 2708.0,
|
| 236 |
+
'avg_edges': 10556.0,
|
| 237 |
+
'min_nodes': 2708,
|
| 238 |
+
'max_nodes': 2708,
|
| 239 |
+
'min_edges': 10556,
|
| 240 |
+
'max_edges': 10556,
|
| 241 |
+
'total_nodes': 2708,
|
| 242 |
+
'total_edges': 10556
|
| 243 |
+
}
|
| 244 |
+
|
| 245 |
+
return stats
|