|
import plotly.graph_objects as go |
|
import plotly.express as px |
|
import networkx as nx |
|
import torch |
|
import numpy as np |
|
|
|
class GraphVisualizer: |
|
"""Graph visualization utilities""" |
|
|
|
@staticmethod |
|
def create_graph_plot(data, max_nodes=500): |
|
"""Create interactive graph visualization""" |
|
try: |
|
|
|
num_nodes = min(data.num_nodes, max_nodes) |
|
|
|
|
|
G = nx.Graph() |
|
edge_list = data.edge_index.t().cpu().numpy() |
|
|
|
|
|
edge_list = edge_list[ |
|
(edge_list[:, 0] < num_nodes) & (edge_list[:, 1] < num_nodes) |
|
] |
|
|
|
if len(edge_list) > 0: |
|
G.add_edges_from(edge_list) |
|
|
|
|
|
G.add_nodes_from(range(num_nodes)) |
|
|
|
|
|
if len(G.nodes()) > 100: |
|
pos = nx.spring_layout(G, k=0.5, iterations=20) |
|
else: |
|
pos = nx.spring_layout(G, k=1, iterations=50) |
|
|
|
|
|
if hasattr(data, 'y') and data.y is not None: |
|
node_colors = data.y.cpu().numpy()[:num_nodes] |
|
else: |
|
node_colors = [0] * num_nodes |
|
|
|
|
|
edge_x, edge_y = [], [] |
|
for edge in G.edges(): |
|
if edge[0] in pos and edge[1] in pos: |
|
x0, y0 = pos[edge[0]] |
|
x1, y1 = pos[edge[1]] |
|
edge_x.extend([x0, x1, None]) |
|
edge_y.extend([y0, y1, None]) |
|
|
|
|
|
node_x = [pos[node][0] for node in G.nodes() if node in pos] |
|
node_y = [pos[node][1] for node in G.nodes() if node in pos] |
|
|
|
fig = go.Figure() |
|
|
|
|
|
if edge_x: |
|
fig.add_trace(go.Scatter( |
|
x=edge_x, y=edge_y, |
|
line=dict(width=0.5, color='#888'), |
|
hoverinfo='none', |
|
mode='lines', |
|
name='Edges' |
|
)) |
|
|
|
|
|
fig.add_trace(go.Scatter( |
|
x=node_x, y=node_y, |
|
mode='markers', |
|
hoverinfo='text', |
|
text=[f'Node {i}' for i in range(len(node_x))], |
|
marker=dict( |
|
size=8, |
|
color=node_colors[:len(node_x)], |
|
colorscale='Viridis', |
|
line=dict(width=1) |
|
), |
|
name='Nodes' |
|
)) |
|
|
|
fig.update_layout( |
|
title=f'Graph Visualization ({num_nodes} nodes)', |
|
showlegend=False, |
|
hovermode='closest', |
|
margin=dict(b=20, l=5, r=5, t=40), |
|
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), |
|
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False), |
|
plot_bgcolor='white' |
|
) |
|
|
|
return fig |
|
|
|
except Exception as e: |
|
|
|
fig = go.Figure() |
|
fig.add_annotation( |
|
text=f"Visualization error: {str(e)}", |
|
x=0.5, y=0.5, |
|
xref="paper", yref="paper", |
|
showarrow=False |
|
) |
|
return fig |
|
|
|
@staticmethod |
|
def create_metrics_plot(metrics): |
|
"""Create metrics visualization""" |
|
try: |
|
metric_names = [] |
|
metric_values = [] |
|
|
|
for key, value in metrics.items(): |
|
if isinstance(value, (int, float)) and key != 'error': |
|
metric_names.append(key.replace('_', ' ').title()) |
|
metric_values.append(value) |
|
|
|
if metric_names: |
|
fig = go.Figure(data=[ |
|
go.Bar( |
|
x=metric_names, |
|
y=metric_values, |
|
marker_color='lightblue' |
|
) |
|
]) |
|
|
|
fig.update_layout( |
|
title='Model Performance Metrics', |
|
xaxis_title='Metric', |
|
yaxis_title='Value', |
|
yaxis=dict(range=[0, 1]) |
|
) |
|
else: |
|
fig = go.Figure() |
|
fig.add_annotation( |
|
text="No metrics to display", |
|
x=0.5, y=0.5, |
|
xref="paper", yref="paper", |
|
showarrow=False |
|
) |
|
|
|
return fig |
|
|
|
except Exception as e: |
|
fig = go.Figure() |
|
fig.add_annotation( |
|
text=f"Metrics plot error: {str(e)}", |
|
x=0.5, y=0.5, |
|
xref="paper", yref="paper", |
|
showarrow=False |
|
) |
|
return fig |