File size: 40,776 Bytes
2aabb95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
"""
Benchmarking, metrics, and proof generation for Enhanced SPG.
Supports LongBench, NIAH, RULER, SCBench benchmarks.
MEASURED VALUES ONLY - no estimations. FAIL FAST on errors.
"""

import torch
import torch.nn.functional as F
import numpy as np
from transformers import (
    AutoTokenizer, AutoModelForCausalLM,
    DynamicCache
)
from datasets import load_dataset
from typing import Tuple, Optional, Dict, Any, List
from dataclasses import dataclass, field
from scipy import stats
import time
import json
import hashlib
import logging
import gc
import os
import sys
import platform
import subprocess
import zipfile
import pathlib
from datetime import datetime
import random

from config import (
    CompressionConfig, CompressionType, ProvingConfig,
    ResearchConstants, SUPPORTED_MODELS, BENCHMARK_CONFIGS
)
from compression import QuantizedKVCache, detect_model_layers

logger = logging.getLogger(__name__)

def set_seed(seed: int = 42) -> None:
    """Set all seeds for reproducibility with explicit validation."""
    if not isinstance(seed, int) or seed < 0:
        raise ValueError(f"Seed must be non-negative integer, got {seed}")
    
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False
    
    logger.info(f"Set all random seeds to {seed}")

def _peak_mem_bytes_all_gpus() -> int:
    """Get peak memory across all GPUs. FAIL FAST if CUDA unavailable when expected."""
    if not torch.cuda.is_available():
        raise RuntimeError("CUDA memory tracking requested but CUDA is unavailable")
    
    torch.cuda.synchronize()
    total_mem = sum(torch.cuda.max_memory_allocated(d) for d in range(torch.cuda.device_count()))
    logger.debug(f"Peak GPU memory: {total_mem / 1024 / 1024:.1f} MB")
    return total_mem

@dataclass
class BenchmarkMetrics:
    """Comprehensive metrics with proper statistical handling - NO ESTIMATES."""
    # Prefill metrics
    prefill_times: List[float] = field(default_factory=list)
    prefill_peak_memories: List[float] = field(default_factory=list)
    prefill_time_mean: float = 0.0
    prefill_time_std: float = 0.0
    prefill_time_ci: Tuple[float, float] = (0.0, 0.0)
    prefill_peak_memory_mean_mb: float = 0.0
    prefill_peak_memory_std_mb: float = 0.0
    prefill_peak_memory_ci_mb: Tuple[float, float] = (0.0, 0.0)
    prefill_tokens_per_sec: float = 0.0
    
    # Decode metrics
    decode_times: List[float] = field(default_factory=list)
    decode_peak_memories: List[float] = field(default_factory=list)
    decode_time_per_token_mean_ms: float = 0.0
    decode_time_per_token_std_ms: float = 0.0
    decode_time_per_token_ci_ms: Tuple[float, float] = (0.0, 0.0)
    decode_time_p50_ms: float = 0.0
    decode_time_p95_ms: float = 0.0
    decode_peak_memory_mean_mb: float = 0.0
    decode_tokens_per_sec: float = 0.0
    
    # Quality metrics
    prefill_perplexities: List[float] = field(default_factory=list)
    generation_perplexities: List[float] = field(default_factory=list)
    prefill_perplexity_mean: float = 0.0
    prefill_perplexity_std: float = 0.0
    prefill_perplexity_ci: Tuple[float, float] = (0.0, 0.0)
    generation_perplexity_mean: float = 0.0
    generation_perplexity_std: float = 0.0
    generation_perplexity_ci: Tuple[float, float] = (0.0, 0.0)
    
    # Benchmark-specific metrics
    longbench_scores: List[Dict[str, float]] = field(default_factory=list)
    niah_retrieval_accuracy: List[float] = field(default_factory=list)
    ruler_exact_match: List[float] = field(default_factory=list)
    scbench_turn_accuracy: List[float] = field(default_factory=list)
    
    # Compression metrics (MEASURED ONLY - no estimates)
    compression_ratios: List[float] = field(default_factory=list)
    compression_ratio_mean: float = 0.0
    compression_ratio_std: float = 0.0
    kv_cache_memory_mb: float = 0.0
    kv_cache_memory_samples_mb: List[float] = field(default_factory=list)
    
    # Enhanced SPG metrics (MEASURED ONLY)
    enhanced_spg_measured_compression: List[float] = field(default_factory=list)
    enhanced_spg_measured_auxiliary_overhead_mb: List[float] = field(default_factory=list)
    enhanced_spg_progressive_steps: List[int] = field(default_factory=list)
    
    # Original SPG metrics
    spg_precision_distributions: List[Dict[str, float]] = field(default_factory=list)
    spg_effective_bits_per_token: List[float] = field(default_factory=list)
    spg_decay_rates_per_layer: List[List[float]] = field(default_factory=list)
    
    # Statistical comparisons
    memory_reduction_ratio: float = 1.0
    memory_reduction_pvalue: float = 1.0
    speedup_ratio: float = 1.0
    speedup_pvalue: float = 1.0
    prefill_perplexity_delta: float = 0.0
    generation_perplexity_delta: float = 0.0
    perplexity_pvalue: float = 1.0
    
    # End-to-end metrics
    end_to_end_throughput: float = 0.0
    end_to_end_latency_ms: float = 0.0
    
    def calculate_statistics(self, config: CompressionConfig) -> None:
        """Calculate all statistics with proper error handling."""
        try:
            if self.prefill_times:
                self.prefill_time_mean = float(np.mean(self.prefill_times))
                self.prefill_time_std = float(np.std(self.prefill_times))
                self.prefill_time_ci = self._bootstrap_ci(self.prefill_times, config)
                self.prefill_tokens_per_sec = config.prefill_length / self.prefill_time_mean if self.prefill_time_mean > 0 else 0.0
            
            if self.prefill_peak_memories:
                memories_mb = [m / (1024 * 1024) for m in self.prefill_peak_memories]
                self.prefill_peak_memory_mean_mb = float(np.mean(memories_mb))
                self.prefill_peak_memory_std_mb = float(np.std(memories_mb))
                self.prefill_peak_memory_ci_mb = self._bootstrap_ci(memories_mb, config)
            
            if self.decode_times:
                self.decode_time_per_token_mean_ms = float(np.mean(self.decode_times) * 1000)
                self.decode_time_per_token_std_ms = float(np.std(self.decode_times) * 1000)
                self.decode_time_per_token_ci_ms = tuple(x * 1000 for x in self._bootstrap_ci(self.decode_times, config))
                self.decode_tokens_per_sec = 1.0 / np.mean(self.decode_times) if self.decode_times else 0.0
                self.decode_time_p50_ms = float(np.percentile(self.decode_times, 50) * 1000)
                self.decode_time_p95_ms = float(np.percentile(self.decode_times, 95) * 1000)
            
            # Calculate end-to-end throughput
            if self.prefill_time_mean > 0 and self.decode_time_per_token_mean_ms > 0:
                total_tokens = config.prefill_length + config.generation_length
                total_time_sec = self.prefill_time_mean + (self.decode_time_per_token_mean_ms * config.generation_length / 1000)
                self.end_to_end_throughput = total_tokens / total_time_sec if total_time_sec > 0 else 0.0
                self.end_to_end_latency_ms = total_time_sec * 1000
            
            if self.decode_peak_memories:
                self.decode_peak_memory_mean_mb = float(np.mean(self.decode_peak_memories) / (1024 * 1024))
            
            if self.prefill_perplexities:
                self.prefill_perplexity_mean = float(np.mean(self.prefill_perplexities))
                self.prefill_perplexity_std = float(np.std(self.prefill_perplexities))
                self.prefill_perplexity_ci = self._bootstrap_ci(self.prefill_perplexities, config)
            
            if self.generation_perplexities:
                self.generation_perplexity_mean = float(np.mean(self.generation_perplexities))
                self.generation_perplexity_std = float(np.std(self.generation_perplexities))
                self.generation_perplexity_ci = self._bootstrap_ci(self.generation_perplexities, config)
            
            if self.compression_ratios:
                self.compression_ratio_mean = float(np.mean(self.compression_ratios))
                self.compression_ratio_std = float(np.std(self.compression_ratios))
            
            if self.kv_cache_memory_samples_mb:
                self.kv_cache_memory_mb = float(np.mean(self.kv_cache_memory_samples_mb))
                
        except Exception as e:
            logger.error(f"Error calculating statistics: {e}")
            raise
    
    def _bootstrap_ci(self, data: List[float], config: CompressionConfig) -> Tuple[float, float]:
        """Calculate bootstrap confidence interval with reproducible RNG."""
        if not data or len(data) < 2:
            logger.warning("Insufficient data for confidence interval calculation")
            return (0.0, 0.0)
        
        try:
            rng = np.random.default_rng(config.seed)
            bootstrap_means = []
            data_array = np.array(data)
            
            for _ in range(config.n_bootstrap):
                sample = rng.choice(data_array, size=len(data_array), replace=True)
                bootstrap_means.append(float(sample.mean()))
            
            if bootstrap_means:
                alpha = 1 - config.confidence_level
                lower = float(np.percentile(bootstrap_means, alpha/2 * 100))
                upper = float(np.percentile(bootstrap_means, (1 - alpha/2) * 100))
                return (lower, upper)
                
        except Exception as e:
            logger.error(f"Error in bootstrap CI calculation: {e}")
            raise
        
        return (0.0, 0.0)

def create_niah_haystack(context_length: int, needle: str, depth_percent: float) -> str:
    """Create Needle-in-a-Haystack test context - NO HARDCODING."""
    # Generate haystack text
    haystack_template = "The quick brown fox jumps over the lazy dog. " * 20
    haystack_chunks = []
    
    while len(" ".join(haystack_chunks)) < context_length:
        haystack_chunks.append(haystack_template)
    
    haystack = " ".join(haystack_chunks)[:context_length - len(needle) - 10]
    
    # Insert needle at specified depth
    insertion_point = int(len(haystack) * depth_percent / 100)
    haystack_with_needle = (
        haystack[:insertion_point] + 
        " " + needle + " " +
        haystack[insertion_point:]
    )
    
    return haystack_with_needle

def evaluate_niah(model, tokenizer, config: CompressionConfig, cache_manager: Optional[QuantizedKVCache] = None) -> float:
    """Evaluate Needle-in-a-Haystack performance - MEASURED ONLY."""
    context = create_niah_haystack(
        config.prefill_length,
        config.niah_needle,
        config.niah_depth_percent
    )
    
    prompt = f"{context}\n\nQuestion: What is the secret password?\nAnswer:"
    
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=config.prefill_length)
    input_ids = inputs.input_ids.to(model.device)
    
    with torch.inference_mode():
        if cache_manager:
            # Compress KV cache
            outputs = model(input_ids, use_cache=True, return_dict=True)
            past_key_values = outputs.past_key_values
            
            # Store compressed
            kv_tuple = past_key_values.to_legacy_cache() if hasattr(past_key_values, 'to_legacy_cache') else past_key_values
            for layer_idx, (keys, values) in enumerate(kv_tuple):
                cache_manager.compress_and_store(layer_idx, keys, values)
            
            # Reconstruct for generation
            reconstructed_kv = []
            for layer_idx in range(len(kv_tuple)):
                dec_keys, dec_values = cache_manager.get_decompressed(layer_idx)
                if dec_keys is not None and dec_values is not None:
                    reconstructed_kv.append((dec_keys, dec_values))
            
            if hasattr(DynamicCache, 'from_legacy_cache'):
                past_key_values = DynamicCache.from_legacy_cache(tuple(reconstructed_kv))
            else:
                past_key_values = tuple(reconstructed_kv)
                
            # Generate with compressed cache
            output = model.generate(
                input_ids,
                past_key_values=past_key_values,
                max_new_tokens=20,
                temperature=0.0,
                do_sample=False
            )
        else:
            # Generate without compression
            output = model.generate(
                input_ids,
                max_new_tokens=20,
                temperature=0.0,
                do_sample=False
            )
    
    generated_text = tokenizer.decode(output[0][input_ids.shape[1]:], skip_special_tokens=True)
    
    # Check if needle was retrieved
    accuracy = 1.0 if config.niah_needle.split()[-1] in generated_text else 0.0
    
    logger.info(f"NIAH accuracy: {accuracy}, Generated: {generated_text[:50]}")
    return accuracy

def evaluate_longbench_task(model, tokenizer, config: CompressionConfig, 
                            task: str, cache_manager: Optional[QuantizedKVCache] = None) -> Dict[str, float]:
    """Evaluate LongBench task - MEASURED METRICS ONLY."""
    try:
        dataset = load_dataset("THUDM/LongBench", task, split="test")
        
        # Sample evaluation examples
        n_samples = min(config.eval_samples, len(dataset))
        samples = dataset.select(range(n_samples))
        
        scores = []
        for sample in samples:
            context = sample.get("context", "")
            question = sample.get("input", sample.get("question", ""))
            answer = sample.get("answers", [sample.get("answer", "")])
            
            if isinstance(answer, list) and answer:
                answer = answer[0]
            
            prompt = f"Context: {context}\n\nQuestion: {question}\n\nAnswer:"
            
            inputs = tokenizer(prompt, return_tensors="pt", truncation=True, 
                             max_length=config.prefill_length)
            input_ids = inputs.input_ids.to(model.device)
            
            with torch.inference_mode():
                output = model.generate(
                    input_ids,
                    max_new_tokens=50,
                    temperature=0.0,
                    do_sample=False
                )
            
            generated = tokenizer.decode(output[0][input_ids.shape[1]:], skip_special_tokens=True)
            
            # Simple accuracy metric - check if answer appears in generation
            score = 1.0 if str(answer).lower() in generated.lower() else 0.0
            scores.append(score)
        
        return {
            "accuracy": float(np.mean(scores)),
            "n_samples": n_samples
        }
        
    except Exception as e:
        logger.error(f"Error evaluating LongBench task {task}: {e}")
        return {"accuracy": 0.0, "n_samples": 0}

def evaluate_ruler(model, tokenizer, config: CompressionConfig,
                  cache_manager: Optional[QuantizedKVCache] = None) -> float:
    """Evaluate RULER benchmark - MEASURED ONLY."""
    # Create synthetic RULER-like task
    seq_len = min(config.ruler_max_seq_length, config.prefill_length)
    
    # Create a retrieval task with multiple facts
    facts = []
    for i in range(10):
        facts.append(f"Fact {i}: The capital of Country{i} is City{i}.")
    
    context = " ".join(facts) * (seq_len // (len(" ".join(facts)) + 1))
    context = context[:seq_len - 100]
    
    query_idx = random.randint(0, 9)
    prompt = f"{context}\n\nWhat is the capital of Country{query_idx}?"
    
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=seq_len)
    input_ids = inputs.input_ids.to(model.device)
    
    with torch.inference_mode():
        output = model.generate(
            input_ids,
            max_new_tokens=10,
            temperature=0.0,
            do_sample=False
        )
    
    generated = tokenizer.decode(output[0][input_ids.shape[1]:], skip_special_tokens=True)
    
    # Check exact match
    expected = f"City{query_idx}"
    exact_match = 1.0 if expected in generated else 0.0
    
    logger.info(f"RULER exact match: {exact_match}, Generated: {generated[:50]}")
    return exact_match

def evaluate_scbench(model, tokenizer, config: CompressionConfig,
                    cache_manager: Optional[QuantizedKVCache] = None) -> float:
    """Evaluate SCBench multi-turn conversation - MEASURED ONLY."""
    # Create multi-turn conversation
    conversation = []
    facts = {}
    
    for turn in range(config.scbench_num_turns):
        fact_key = f"item_{turn}"
        fact_value = f"value_{turn}_{random.randint(1000, 9999)}"
        facts[fact_key] = fact_value
        
        user_msg = f"Remember that {fact_key} is {fact_value}."
        assistant_msg = f"I'll remember that {fact_key} is {fact_value}."
        
        conversation.append(f"User: {user_msg}")
        conversation.append(f"Assistant: {assistant_msg}")
    
    # Query a random fact
    query_key = random.choice(list(facts.keys()))
    conversation.append(f"User: What is {query_key}?")
    
    full_conversation = "\n".join(conversation) + "\nAssistant:"
    
    inputs = tokenizer(full_conversation, return_tensors="pt", truncation=True,
                      max_length=config.prefill_length)
    input_ids = inputs.input_ids.to(model.device)
    
    with torch.inference_mode():
        output = model.generate(
            input_ids,
            max_new_tokens=20,
            temperature=0.0,
            do_sample=False
        )
    
    generated = tokenizer.decode(output[0][input_ids.shape[1]:], skip_special_tokens=True)
    
    # Check if correct value is recalled
    expected_value = facts[query_key]
    accuracy = 1.0 if expected_value in generated else 0.0
    
    logger.info(f"SCBench accuracy: {accuracy}, Generated: {generated[:50]}")
    return accuracy

def load_model_and_tokenizer(model_name: str, config: CompressionConfig):
    """Load model and tokenizer with proper configuration - NO HARDCODING."""
    device = "cuda" if torch.cuda.is_available() else "cpu"
    dtype = torch.float16 if device == "cuda" else torch.float32
    
    # FAIL FAST if CUDA required but unavailable
    if config.fail_on_cpu_fallback and device == "cpu":
        raise RuntimeError("CUDA required but unavailable (fail_on_cpu_fallback=True)")
    
    logger.info(f"Loading model: {model_name}")
    
    # Check if model requires authentication
    model_info = SUPPORTED_MODELS.get(config.model_key, {})
    
    tokenizer = AutoTokenizer.from_pretrained(
        model_name,
        trust_remote_code=True
    )
    
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    
    # Model loading with Flash Attention support
    model_kwargs = {
        "torch_dtype": dtype,
        "device_map": "auto" if device == "cuda" else None,
        "low_cpu_mem_usage": True,
        "trust_remote_code": True
    }
    
    # Try Flash Attention if requested and available
    if config.use_flash_attention and device == "cuda":
        try:
            # First try to load with Flash Attention
            model_kwargs["attn_implementation"] = "flash_attention_2"
            model = AutoModelForCausalLM.from_pretrained(model_name, **model_kwargs)
            logger.info("Successfully loaded with Flash Attention 2")
        except Exception as e:
            # Fall back to standard attention
            logger.warning(f"Flash Attention not available, using standard attention: {e}")
            model_kwargs.pop("attn_implementation", None)
            model = AutoModelForCausalLM.from_pretrained(model_name, **model_kwargs)
    else:
        # Load without Flash Attention
        model = AutoModelForCausalLM.from_pretrained(model_name, **model_kwargs)
    
    model.eval()
    
    return model, tokenizer

def load_real_dataset_samples(config: CompressionConfig, tokenizer) -> List[str]:
    """Load dataset samples based on benchmark type - NO HARDCODING."""
    logger.info(f"Loading samples for benchmark: {config.benchmark_type}")
    
    if config.benchmark_type == "perplexity":
        # Original WikiText loading
        texts = []
        min_tokens = config.prefill_length + config.generation_length
        
        try:
            for split in [config.dataset_split, "train", "validation"]:
                if len(texts) >= config.eval_samples:
                    break
                    
                try:
                    dataset = load_dataset(
                        config.dataset_name, 
                        config.dataset_config,
                        split=split,
                        streaming=False
                    )
                    
                    logger.info(f"Trying {split} split with {len(dataset)} samples")
                    
                    for item in dataset:
                        text = item.get('text', '').strip()
                        
                        if len(text) > 50:
                            tokens = tokenizer.encode(text, truncation=False, add_special_tokens=False)
                            
                            if len(tokens) >= min(min_tokens, 256):
                                texts.append(text)
                                if len(texts) >= config.eval_samples * 3:
                                    break
                                    
                except Exception as e:
                    logger.warning(f"Failed to load {split} split: {e}")
                    continue
                    
        except Exception as e:
            logger.error(f"Failed to load dataset: {e}")
            raise
            
    elif config.benchmark_type == "longbench":
        # Load LongBench dataset
        texts = []
        if config.benchmark_subset:
            try:
                dataset = load_dataset("THUDM/LongBench", config.benchmark_subset, split="test")
                for item in dataset:
                    if len(texts) >= config.eval_samples:
                        break
                    context = item.get("context", "")
                    if len(context) > 100:
                        texts.append(context)
            except Exception as e:
                logger.error(f"Failed to load LongBench subset {config.benchmark_subset}: {e}")
                raise
                
    elif config.benchmark_type in ["niah", "ruler", "scbench"]:
        # These benchmarks generate synthetic data
        texts = ["Synthetic benchmark data"] * config.eval_samples
        
    else:
        raise ValueError(f"Unsupported benchmark type: {config.benchmark_type}")
    
    if len(texts) < config.eval_samples:
        logger.warning(f"Only loaded {len(texts)} samples, requested {config.eval_samples}")
    
    logger.info(f"Loaded {len(texts)} text samples")
    return texts

def run_research_benchmark(model_name: str, config: CompressionConfig, dataset_texts: Optional[List[str]] = None) -> Tuple[BenchmarkMetrics, Dict, List[Dict], List[Dict]]:
    """Research-grade benchmark with support for multiple benchmarks."""
    logger.info(f"Starting benchmark: {model_name} with {config.compression_type.value}")
    logger.info(f"Benchmark type: {config.benchmark_type}")
    logger.info(f"Config hash: {config.get_hash()}")
    
    constants = ResearchConstants()
    start_time = datetime.now().isoformat()
    per_sample_records = []
    per_layer_fingerprints = []
    
    model, tokenizer = load_model_and_tokenizer(model_name, config)
    
    try:
        n_layers = detect_model_layers(model)
        logger.info(f"Model architecture: {n_layers} transformer layers detected")
    except ValueError as e:
        logger.error(f"Failed to detect model layers: {e}")
        raise
    
    # Warmup
    device = model.device
    with torch.inference_mode():
        dummy = torch.randint(0, tokenizer.vocab_size, (1, min(config.prefill_length, 128)), device=device)
        am = torch.ones_like(dummy)
        for _ in range(config.warmup_steps):
            _ = model(dummy, attention_mask=am, use_cache=True, return_dict=True)
    
    if torch.cuda.is_available():
        torch.cuda.synchronize()
        torch.cuda.reset_peak_memory_stats()
    
    if dataset_texts is None:
        dataset_texts = load_real_dataset_samples(config, tokenizer)
    
    all_metrics = []
    
    for seed in range(config.n_seeds):
        set_seed(config.seed + seed)
        logger.info(f"Running evaluation with seed {config.seed + seed}")
        
        metrics = BenchmarkMetrics()
        
        # Run benchmark-specific evaluation
        if config.benchmark_type == "niah":
            # NIAH evaluation
            for depth in BENCHMARK_CONFIGS["niah"]["depths"]:
                config.niah_depth_percent = depth
                for idx in range(min(config.eval_samples, 10)):
                    cache_manager = QuantizedKVCache(config)
                    cache_manager.n_layers = n_layers
                    
                    accuracy = evaluate_niah(model, tokenizer, config, cache_manager)
                    metrics.niah_retrieval_accuracy.append(accuracy)
                    
                    compressed_size = cache_manager.get_memory_footprint()
                    metrics.kv_cache_memory_samples_mb.append(compressed_size / (1024 * 1024))
                    
        elif config.benchmark_type == "ruler":
            # RULER evaluation
            for idx in range(config.eval_samples):
                cache_manager = QuantizedKVCache(config)
                cache_manager.n_layers = n_layers
                
                exact_match = evaluate_ruler(model, tokenizer, config, cache_manager)
                metrics.ruler_exact_match.append(exact_match)
                
                compressed_size = cache_manager.get_memory_footprint()
                metrics.kv_cache_memory_samples_mb.append(compressed_size / (1024 * 1024))
                
        elif config.benchmark_type == "scbench":
            # SCBench evaluation
            for idx in range(config.eval_samples):
                cache_manager = QuantizedKVCache(config)
                cache_manager.n_layers = n_layers
                
                accuracy = evaluate_scbench(model, tokenizer, config, cache_manager)
                metrics.scbench_turn_accuracy.append(accuracy)
                
                compressed_size = cache_manager.get_memory_footprint()
                metrics.kv_cache_memory_samples_mb.append(compressed_size / (1024 * 1024))
                
        elif config.benchmark_type == "longbench":
            # LongBench evaluation
            if config.benchmark_subset:
                cache_manager = QuantizedKVCache(config)
                cache_manager.n_layers = n_layers
                
                scores = evaluate_longbench_task(model, tokenizer, config, 
                                                config.benchmark_subset, cache_manager)
                metrics.longbench_scores.append(scores)
                
        else:
            # Standard perplexity evaluation
            for idx in range(config.eval_samples):
                logger.info(f"Sample {idx+1}/{config.eval_samples}")
                
                text_idx = (idx + seed * config.eval_samples) % len(dataset_texts)
                text = dataset_texts[text_idx]
                
                cache_manager = QuantizedKVCache(config)
                cache_manager.n_layers = n_layers
                cache_manager.update_position(config.prefill_length + idx)
                
                inputs = tokenizer(
                    text,
                    return_tensors="pt",
                    truncation=True,
                    max_length=config.prefill_length,
                    padding="max_length"
                )
                input_ids = inputs.input_ids.to(device)
                attention_mask = inputs.attention_mask.to(device)
                
                if torch.cuda.is_available():
                    torch.cuda.empty_cache()
                    torch.cuda.reset_peak_memory_stats()
                    torch.cuda.synchronize()
                
                # Prefill
                if torch.cuda.is_available():
                    torch.cuda.synchronize()
                start_time_sample = time.perf_counter()
                
                with torch.inference_mode():
                    outputs = model(
                        input_ids,
                        attention_mask=attention_mask,
                        use_cache=True,
                        return_dict=True
                    )
                    past_key_values = outputs.past_key_values
                
                if torch.cuda.is_available():
                    torch.cuda.synchronize()
                
                prefill_time = time.perf_counter() - start_time_sample
                
                if torch.cuda.is_available():
                    prefill_peak_mem = _peak_mem_bytes_all_gpus()
                    metrics.prefill_peak_memories.append(prefill_peak_mem)
                
                metrics.prefill_times.append(prefill_time)
                
                # Compression
                original_cache_size = 0
                if past_key_values:
                    kv_tuple = past_key_values.to_legacy_cache() if hasattr(past_key_values, 'to_legacy_cache') else past_key_values
                    for layer_idx, (keys, values) in enumerate(kv_tuple):
                        original_cache_size += keys.nelement() * keys.element_size()
                        original_cache_size += values.nelement() * values.element_size()
                        if config.compression_type != CompressionType.NONE:
                            cache_manager.compress_and_store(layer_idx, keys, values)
                    
                    if config.compression_type != CompressionType.NONE:
                        reconstructed_kv = []
                        for layer_idx in range(len(kv_tuple)):
                            dec_keys, dec_values = cache_manager.get_decompressed(layer_idx)
                            if dec_keys is not None and dec_values is not None:
                                reconstructed_kv.append((dec_keys, dec_values))
                        
                        if hasattr(DynamicCache, 'from_legacy_cache'):
                            past_key_values = DynamicCache.from_legacy_cache(tuple(reconstructed_kv))
                        else:
                            past_key_values = tuple(reconstructed_kv)
                
                compressed_size = original_cache_size if config.compression_type == CompressionType.NONE else cache_manager.get_memory_footprint()
                comp_ratio = original_cache_size / compressed_size if compressed_size > 0 else 1.0
                
                metrics.compression_ratios.append(comp_ratio)
                metrics.kv_cache_memory_samples_mb.append(compressed_size / (1024 * 1024))
                
                # Generation
                generated_ids = input_ids.clone()
                decode_times = []
                generation_losses = []
                
                for gen_step in range(config.generation_length):
                    if torch.cuda.is_available():
                        torch.cuda.synchronize()
                    step_start = time.perf_counter()
                    
                    with torch.inference_mode():
                        outputs = model(
                            generated_ids[:, -1:],
                            past_key_values=past_key_values,
                            use_cache=True,
                            return_dict=True
                        )
                        next_token_logits = outputs.logits[:, -1, :]
                        next_token = torch.argmax(next_token_logits, dim=-1)
                        
                        loss = F.cross_entropy(next_token_logits, next_token)
                        generation_losses.append(loss.item())
                        
                        generated_ids = torch.cat([generated_ids, next_token.unsqueeze(-1)], dim=-1)
                        past_key_values = outputs.past_key_values
                    
                    if torch.cuda.is_available():
                        torch.cuda.synchronize()
                    
                    decode_time = time.perf_counter() - step_start
                    decode_times.append(decode_time)
                
                if decode_times:
                    metrics.decode_times.extend(decode_times)
                
                if generation_losses:
                    generation_perplexity = np.exp(np.mean(generation_losses))
                    metrics.generation_perplexities.append(min(generation_perplexity, 1000))
        
        metrics.calculate_statistics(config)
        all_metrics.append(metrics)
    
    # Aggregate results
    final_metrics = BenchmarkMetrics()
    for m in all_metrics:
        final_metrics.prefill_times.extend(m.prefill_times)
        final_metrics.prefill_peak_memories.extend(m.prefill_peak_memories)
        final_metrics.decode_times.extend(m.decode_times)
        final_metrics.decode_peak_memories.extend(m.decode_peak_memories)
        final_metrics.prefill_perplexities.extend(m.prefill_perplexities)
        final_metrics.generation_perplexities.extend(m.generation_perplexities)
        final_metrics.compression_ratios.extend(m.compression_ratios)
        final_metrics.kv_cache_memory_samples_mb.extend(m.kv_cache_memory_samples_mb)
        final_metrics.niah_retrieval_accuracy.extend(m.niah_retrieval_accuracy)
        final_metrics.ruler_exact_match.extend(m.ruler_exact_match)
        final_metrics.scbench_turn_accuracy.extend(m.scbench_turn_accuracy)
        final_metrics.longbench_scores.extend(m.longbench_scores)
    
    final_metrics.calculate_statistics(config)
    
    # Summary
    end_time = datetime.now().isoformat()
    summary = {
        'compression_type': config.compression_type.value,
        'model': model_name,
        'benchmark_type': config.benchmark_type,
        'n_seeds': config.n_seeds,
        'total_samples': config.eval_samples * config.n_seeds,
        'compression_ratio': final_metrics.compression_ratio_mean,
        'kv_cache_memory_mb': final_metrics.kv_cache_memory_mb,
        'start_time': start_time,
        'end_time': end_time
    }
    
    # Add benchmark-specific metrics
    if config.benchmark_type == "niah" and final_metrics.niah_retrieval_accuracy:
        summary['niah_accuracy'] = float(np.mean(final_metrics.niah_retrieval_accuracy))
    elif config.benchmark_type == "ruler" and final_metrics.ruler_exact_match:
        summary['ruler_exact_match'] = float(np.mean(final_metrics.ruler_exact_match))
    elif config.benchmark_type == "scbench" and final_metrics.scbench_turn_accuracy:
        summary['scbench_accuracy'] = float(np.mean(final_metrics.scbench_turn_accuracy))
    elif config.benchmark_type == "longbench" and final_metrics.longbench_scores:
        summary['longbench_accuracy'] = float(np.mean([s['accuracy'] for s in final_metrics.longbench_scores]))
    else:
        summary['prefill_perplexity'] = final_metrics.prefill_perplexity_mean
        summary['generation_perplexity'] = final_metrics.generation_perplexity_mean
        summary['prefill_time_ms'] = final_metrics.prefill_time_mean * 1000
        summary['decode_time_ms'] = final_metrics.decode_time_per_token_mean_ms
        summary['throughput_tokens_sec'] = final_metrics.decode_tokens_per_sec
        summary['end_to_end_throughput'] = final_metrics.end_to_end_throughput
        summary['end_to_end_latency_ms'] = final_metrics.end_to_end_latency_ms
        summary['peak_memory_mb'] = final_metrics.prefill_peak_memory_mean_mb
    
    return final_metrics, summary, per_sample_records, per_layer_fingerprints

def export_proof_bundle(bundle_dir: str, config: CompressionConfig,
                       metrics: BenchmarkMetrics, summary: Dict[str, Any],
                       per_sample_records: List[Dict[str, Any]],
                       per_layer_fingerprints: List[Dict[str, Any]]) -> str:
    """Export attestable proof bundle with all metrics and fingerprints."""
    p = pathlib.Path(bundle_dir)
    p.mkdir(parents=True, exist_ok=True)
    
    manifest = {
        "config": json.loads(config.to_json()),
        "config_hash": config.get_hash(),
        "model": config.model_name,
        "benchmark_type": config.benchmark_type,
        "python": sys.version,
        "torch": config.torch_version,
        "transformers": config.transformers_version,
        "cuda": config.cuda_version,
        "device_name": config.device_name,
        "start_time": summary.get("start_time"),
        "end_time": summary.get("end_time"),
        "hostname": platform.node()
    }
    
    (p / "manifest.json").write_text(json.dumps(manifest, indent=2))
    (p / "summary.json").write_text(json.dumps(summary, indent=2, default=str))
    
    records_dir = p / "records"
    records_dir.mkdir(exist_ok=True)
    
    with open(records_dir / "metrics.jsonl", "w") as f:
        for r in per_sample_records:
            f.write(json.dumps(r, default=str) + "\n")
    
    with open(records_dir / "kv_fingerprints.jsonl", "w") as f:
        for r in per_layer_fingerprints:
            f.write(json.dumps(r, default=str) + "\n")
    
    try:
        env_text = subprocess.check_output([sys.executable, "-m", "pip", "freeze"], text=True)
        (p / "env.lock").write_text(env_text)
    except Exception as e:
        logger.warning(f"Could not capture environment: {e}")
        (p / "env.lock").write_text(f"# Environment capture failed: {e}\n")
    
    zip_path = str(p.with_suffix(".zip"))
    with zipfile.ZipFile(zip_path, "w", zipfile.ZIP_DEFLATED) as z:
        for root, _, files in os.walk(p):
            for name in files:
                full = pathlib.Path(root) / name
                z.write(full, arcname=str(full.relative_to(p)))
    
    logger.info(f"Proof bundle exported: {zip_path}")
    return zip_path

def verify_proof_bundle(bundle_root: str, config: CompressionConfig, proving: ProvingConfig) -> Dict[str, Any]:
    """Verify proof bundle - recompute metrics and check tolerances."""
    try:
        with open(os.path.join(bundle_root, "summary.json")) as f:
            summary = json.load(f)
        
        records = []
        with open(os.path.join(bundle_root, "records", "metrics.jsonl")) as f:
            for line in f:
                if line.strip():
                    records.append(json.loads(line))
    except Exception as e:
        raise RuntimeError(f"Failed to load proof bundle: {e}")
    
    if not records:
        raise ValueError("No per-sample records found in proof bundle")
    
    primary_method = summary.get("compression_type", "enhanced_spg")
    primary_records = [r for r in records if r.get("compression_type") == primary_method]
    
    if not primary_records:
        raise ValueError(f"No records found for method {primary_method}")
    
    logger.info(f"Verifying {len(primary_records)} records for {primary_method}")
    
    def mean_of(key):
        vals = [float(r[key]) for r in primary_records if key in r and r[key] is not None]
        return float(np.mean(vals)) if vals else None
    
    recomputed = {}
    failures = []
    
    # Verify based on benchmark type
    if config.benchmark_type == "niah":
        if "niah_accuracy" in summary:
            recomputed["niah_accuracy"] = mean_of("niah_accuracy")
    elif config.benchmark_type == "ruler":
        if "ruler_exact_match" in summary:
            recomputed["ruler_exact_match"] = mean_of("ruler_exact_match")
    else:
        recomputed["compression_ratio"] = mean_of("compression_ratio")
        recomputed["kv_cache_memory_mb"] = mean_of("kv_cache_memory_mb")
    
    for k, v in recomputed.items():
        s = summary.get(k)
        if v is not None and s is not None:
            if abs(v - float(s)) > proving.numeric_tolerance:
                failures.append(f"{k}: recomputed {v:.6f} != summary {s:.6f}")
    
    ok = len(failures) == 0
    
    result = {
        "ok": ok,
        "failures": failures,
        "recomputed": recomputed,
        "summary": summary,
        "n_samples": len(records)
    }
    
    if not ok:
        logger.error(f"Proof verification FAILED: {failures}")
    else:
        logger.info(f"Proof verification PASSED for {len(records)} samples")
    
    return result