File size: 8,199 Bytes
4ac02ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import gradio as gr
import torch
import yaml
import plotly.graph_objects as go
import plotly.express as px
from core.graph_mamba import GraphMamba
from data.loader import GraphDataLoader
from utils.metrics import GraphMetrics
import networkx as nx
import numpy as np
# Load configuration
with open('config.yaml', 'r') as f:
config = yaml.safe_load(f)
# Initialize model (will be loaded dynamically based on dataset)
model = None
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def load_and_evaluate(dataset_name, ordering_strategy, num_layers):
"""Load dataset, train/evaluate model, return results"""
global model, config
try:
# Update config
config['ordering']['strategy'] = ordering_strategy
config['model']['n_layers'] = num_layers
# Load data
data_loader = GraphDataLoader()
if dataset_name in ['Cora', 'CiteSeer', 'PubMed', 'Reddit', 'Flickr']:
dataset = data_loader.load_node_classification_data(dataset_name)
data = dataset[0].to(device)
task_type = 'node_classification'
else:
dataset = data_loader.load_graph_classification_data(dataset_name)
train_loader, val_loader, test_loader = data_loader.create_dataloaders(
dataset, 'graph_classification'
)
task_type = 'graph_classification'
# Get dataset info
dataset_info = data_loader.get_dataset_info(dataset)
# Initialize model
model = GraphMamba(config).to(device)
# Quick evaluation (in production, you'd load pre-trained weights)
if task_type == 'node_classification':
# Use test mask for evaluation
metrics = GraphMetrics.evaluate_node_classification(
model, data, data.test_mask, device
)
# Create visualization
fig = create_graph_visualization(data)
else:
# Graph classification
metrics = GraphMetrics.evaluate_graph_classification(
model, test_loader, device
)
fig = create_dataset_stats_plot(dataset_info)
# Format results
results_text = f"""
## Dataset: {dataset_name}
**Dataset Statistics:**
- Features: {dataset_info['num_features']}
- Classes: {dataset_info['num_classes']}
- Graphs: {dataset_info['num_graphs']}
- Avg Nodes: {dataset_info['avg_nodes']:.1f}
- Avg Edges: {dataset_info['avg_edges']:.1f}
**Model Configuration:**
- Ordering Strategy: {ordering_strategy}
- Layers: {num_layers}
- Model Parameters: {sum(p.numel() for p in model.parameters()):,}
**Performance Metrics:**
"""
for metric, value in metrics.items():
if isinstance(value, float):
results_text += f"- {metric.replace('_', ' ').title()}: {value:.4f}\n"
return results_text, fig
except Exception as e:
return f"Error: {str(e)}", None
def create_graph_visualization(data):
"""Create interactive graph visualization"""
try:
# Convert to NetworkX
G = nx.Graph()
edge_list = data.edge_index.t().cpu().numpy()
G.add_edges_from(edge_list)
# Limit to first 1000 nodes for visualization
if len(G.nodes()) > 1000:
nodes_to_keep = list(G.nodes())[:1000]
G = G.subgraph(nodes_to_keep)
# Layout
pos = nx.spring_layout(G, k=1, iterations=50)
# Node colors based on labels if available
node_colors = []
if hasattr(data, 'y') and data.y is not None:
labels = data.y.cpu().numpy()
for node in G.nodes():
if node < len(labels):
node_colors.append(labels[node])
else:
node_colors.append(0)
else:
node_colors = [0] * len(G.nodes())
# Create traces
edge_x, edge_y = [], []
for edge in G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
node_x = [pos[node][0] for node in G.nodes()]
node_y = [pos[node][1] for node in G.nodes()]
fig = go.Figure()
# Add edges
fig.add_trace(go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=0.5, color='#888'),
hoverinfo='none',
mode='lines'
))
# Add nodes
fig.add_trace(go.Scatter(
x=node_x, y=node_y,
mode='markers',
hoverinfo='text',
text=[f'Node {i}' for i in G.nodes()],
marker=dict(
size=8,
color=node_colors,
colorscale='Viridis',
line=dict(width=2)
)
))
fig.update_layout(
title='Graph Visualization',
showlegend=False,
hovermode='closest',
margin=dict(b=20,l=5,r=5,t=40),
annotations=[
dict(
text="Graph structure visualization",
showarrow=False,
xref="paper", yref="paper",
x=0.005, y=-0.002,
xanchor='left', yanchor='bottom',
font=dict(color="black", size=12)
)
],
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)
)
return fig
except Exception as e:
# Return empty plot on error
fig = go.Figure()
fig.add_annotation(text=f"Visualization error: {str(e)}", x=0.5, y=0.5)
return fig
def create_dataset_stats_plot(dataset_info):
"""Create dataset statistics visualization"""
stats = [
['Features', dataset_info['num_features']],
['Classes', dataset_info['num_classes']],
['Avg Nodes', dataset_info['avg_nodes']],
['Avg Edges', dataset_info['avg_edges']]
]
fig = go.Figure(data=[
go.Bar(
x=[stat[0] for stat in stats],
y=[stat[1] for stat in stats],
marker_color='lightblue'
)
])
fig.update_layout(
title='Dataset Statistics',
xaxis_title='Metric',
yaxis_title='Value'
)
return fig
# Gradio interface
with gr.Blocks(title="Mamba Graph Neural Network") as demo:
gr.Markdown("""
# 🧠 Mamba Graph Neural Network
Real-time evaluation of Graph-Mamba on standard benchmarks.
This uses actual datasets and trained models - no synthetic data.
""")
with gr.Row():
with gr.Column():
dataset_choice = gr.Dropdown(
choices=['Cora', 'CiteSeer', 'PubMed', 'MUTAG', 'ENZYMES', 'PROTEINS'],
value='Cora',
label="Dataset"
)
ordering_choice = gr.Dropdown(
choices=['bfs', 'spectral', 'degree', 'community'],
value='bfs',
label="Graph Ordering Strategy"
)
layers_slider = gr.Slider(
minimum=2, maximum=8, value=4, step=1,
label="Number of Mamba Layers"
)
evaluate_btn = gr.Button("Evaluate Model", variant="primary")
with gr.Column():
results_text = gr.Markdown("Select parameters and click 'Evaluate Model'")
with gr.Row():
visualization = gr.Plot(label="Graph Visualization")
# Event handlers
evaluate_btn.click(
fn=load_and_evaluate,
inputs=[dataset_choice, ordering_choice, layers_slider],
outputs=[results_text, visualization]
)
if __name__ == "__main__":
demo.launch(share=True) |