File size: 10,514 Bytes
6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e 6aa4c8c 93db32e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import OneCycleLR, CosineAnnealingWarmRestarts
import numpy as np
import time
import logging
from utils.metrics import GraphMetrics
logger = logging.getLogger(__name__)
class GraphMambaTrainer:
"""Enhanced trainer with optimized learning rates and schedules"""
def __init__(self, model, config, device):
self.model = model
self.config = config
self.device = device
# Fixed learning rate (much lower)
self.lr = 0.001 # Changed from 0.01
self.epochs = config['training']['epochs']
self.patience = config['training'].get('patience', 15)
self.min_lr = config['training'].get('min_lr', 1e-6)
# Enhanced optimizer
self.optimizer = optim.AdamW(
model.parameters(),
lr=self.lr,
weight_decay=config['training']['weight_decay'],
betas=(0.9, 0.999),
eps=1e-8
)
# Proper loss function
self.criterion = nn.CrossEntropyLoss()
# Learning rate scheduler (will be set in training)
self.scheduler = None
# Training state
self.best_val_acc = 0.0
self.best_val_loss = float('inf')
self.patience_counter = 0
self.training_history = {
'train_loss': [], 'train_acc': [],
'val_loss': [], 'val_acc': [], 'lr': []
}
def _setup_scheduler(self, total_steps):
"""Setup learning rate scheduler"""
self.scheduler = OneCycleLR(
self.optimizer,
max_lr=self.lr,
total_steps=total_steps,
pct_start=0.1, # 10% warmup
anneal_strategy='cos',
div_factor=10.0, # Start LR = max_lr/10
final_div_factor=100.0 # End LR = max_lr/100
)
def train_node_classification(self, data, verbose=True):
"""Enhanced training with proper LR scheduling"""
if verbose:
print(f"ποΈ Training GraphMamba for {self.epochs} epochs")
print(f"π Dataset: {data.num_nodes} nodes, {data.num_edges} edges")
print(f"π― Classes: {len(torch.unique(data.y))}")
print(f"πΎ Device: {self.device}")
print(f"βοΈ Parameters: {sum(p.numel() for p in self.model.parameters()):,}")
# Initialize classifier
num_classes = len(torch.unique(data.y))
self.model._init_classifier(num_classes, self.device)
# Setup scheduler
self._setup_scheduler(self.epochs)
self.model.train()
start_time = time.time()
for epoch in range(self.epochs):
# Training step
train_metrics = self._train_epoch(data, epoch)
# Validation step
val_metrics = self._validate_epoch(data, epoch)
# Update history
self.training_history['train_loss'].append(train_metrics['loss'])
self.training_history['train_acc'].append(train_metrics['acc'])
self.training_history['val_loss'].append(val_metrics['loss'])
self.training_history['val_acc'].append(val_metrics['acc'])
self.training_history['lr'].append(self.optimizer.param_groups[0]['lr'])
# Check for improvement
if val_metrics['acc'] > self.best_val_acc:
self.best_val_acc = val_metrics['acc']
self.best_val_loss = val_metrics['loss']
self.patience_counter = 0
if verbose:
print(f"π New best validation accuracy: {self.best_val_acc:.4f}")
else:
self.patience_counter += 1
# Progress logging
if verbose and (epoch == 0 or (epoch + 1) % 10 == 0 or epoch == self.epochs - 1):
elapsed = time.time() - start_time
print(f"Epoch {epoch:3d} | "
f"Train: {train_metrics['loss']:.4f} ({train_metrics['acc']:.4f}) | "
f"Val: {val_metrics['loss']:.4f} ({val_metrics['acc']:.4f}) | "
f"LR: {self.optimizer.param_groups[0]['lr']:.6f} | "
f"Time: {elapsed:.1f}s")
# Early stopping
if self.patience_counter >= self.patience:
if verbose:
print(f"π Early stopping at epoch {epoch}")
break
# Step scheduler
self.scheduler.step()
if verbose:
total_time = time.time() - start_time
print(f"β
Training completed in {total_time:.2f}s")
print(f"π Best validation accuracy: {self.best_val_acc:.4f}")
return self.training_history
def _train_epoch(self, data, epoch):
"""Single training epoch"""
self.model.train()
self.optimizer.zero_grad()
# Forward pass
h = self.model(data.x, data.edge_index)
logits = self.model.classifier(h)
# Compute loss on training nodes
train_loss = self.criterion(logits[data.train_mask], data.y[data.train_mask])
# Backward pass
train_loss.backward()
# Gradient clipping
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
self.optimizer.step()
# Compute accuracy
with torch.no_grad():
train_pred = logits[data.train_mask].argmax(dim=1)
train_acc = (train_pred == data.y[data.train_mask]).float().mean().item()
return {'loss': train_loss.item(), 'acc': train_acc}
def _validate_epoch(self, data, epoch):
"""Single validation epoch"""
self.model.eval()
with torch.no_grad():
h = self.model(data.x, data.edge_index)
logits = self.model.classifier(h)
# Validation loss and accuracy
val_loss = self.criterion(logits[data.val_mask], data.y[data.val_mask])
val_pred = logits[data.val_mask].argmax(dim=1)
val_acc = (val_pred == data.y[data.val_mask]).float().mean().item()
return {'loss': val_loss.item(), 'acc': val_acc}
def test(self, data):
"""Comprehensive test evaluation"""
self.model.eval()
with torch.no_grad():
h = self.model(data.x, data.edge_index)
# Ensure classifier exists
if self.model.classifier is None:
num_classes = len(torch.unique(data.y))
self.model._init_classifier(num_classes, self.device)
logits = self.model.classifier(h)
# Test metrics
test_loss = self.criterion(logits[data.test_mask], data.y[data.test_mask])
test_pred = logits[data.test_mask]
test_target = data.y[data.test_mask]
# Comprehensive metrics
metrics = {
'test_loss': test_loss.item(),
'test_acc': GraphMetrics.accuracy(test_pred, test_target),
'f1_macro': GraphMetrics.f1_score_macro(test_pred, test_target),
'f1_micro': GraphMetrics.f1_score_micro(test_pred, test_target),
}
# Additional metrics
precision, recall = GraphMetrics.precision_recall(test_pred, test_target)
metrics['precision'] = precision
metrics['recall'] = recall
return metrics
def get_embeddings(self, data):
"""Get node embeddings"""
self.model.eval()
with torch.no_grad():
return self.model(data.x, data.edge_index)
class EnhancedGraphMambaTrainer(GraphMambaTrainer):
"""Enhanced trainer with additional optimizations"""
def __init__(self, model, config, device):
super().__init__(model, config, device)
# Even more conservative learning rate for complex architectures
if hasattr(model, 'multi_scale') or 'Hybrid' in model.__class__.__name__:
self.lr = 0.0005 # Lower for complex models
self.optimizer = optim.AdamW(
model.parameters(),
lr=self.lr,
weight_decay=config['training']['weight_decay'],
betas=(0.9, 0.99), # More stable
eps=1e-8
)
def _setup_scheduler(self, total_steps):
"""Enhanced scheduler for complex models"""
# Cosine annealing with warm restarts
self.scheduler = CosineAnnealingWarmRestarts(
self.optimizer,
T_0=20, # Restart every 20 epochs
T_mult=2, # Double period after restart
eta_min=self.min_lr
)
def train_node_classification(self, data, verbose=True):
"""Training with enhanced monitoring"""
if verbose:
model_type = self.model.__class__.__name__
print(f"ποΈ Training {model_type} for {self.epochs} epochs")
print(f"π Dataset: {data.num_nodes} nodes, {data.num_edges} edges")
print(f"π― Classes: {len(torch.unique(data.y))}")
print(f"πΎ Device: {self.device}")
print(f"βοΈ Parameters: {sum(p.numel() for p in self.model.parameters()):,}")
print(f"π Learning Rate: {self.lr} (enhanced schedule)")
# Call parent method with enhancements
history = super().train_node_classification(data, verbose)
# Additional analysis
if verbose:
final_acc = history['val_acc'][-1] if history['val_acc'] else 0
improvement = final_acc - (history['val_acc'][0] if history['val_acc'] else 0)
print(f"π Final validation accuracy: {final_acc:.4f}")
print(f"π Total improvement: {improvement:.4f} ({improvement*100:.1f}%)")
if final_acc > 0.6:
print("π Excellent performance! Model converged well.")
elif final_acc > 0.4:
print("π Good progress! Consider more epochs or tuning.")
else:
print("β οΈ Low accuracy. Check model architecture or data.")
return history |