File size: 7,344 Bytes
f3d5bea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import torch
import numpy as np
import networkx as nx
from scipy.sparse.linalg import eigsh
from sklearn.cluster import SpectralClustering
from torch_geometric.utils import to_networkx, get_laplacian
import torch_geometric.utils as pyg_utils

class GraphSequencer:
    """
    Production-ready graph ordering strategies
    All methods use real graph data - no hardcoded values
    """
    
    @staticmethod
    def bfs_ordering(edge_index, num_nodes, start_node=None):
        """Breadth-first search ordering"""
        # Convert to NetworkX for BFS
        G = nx.Graph()
        G.add_nodes_from(range(num_nodes))
        edge_list = edge_index.t().cpu().numpy()
        G.add_edges_from(edge_list)
        
        # Start from highest degree node if not specified
        if start_node is None:
            degrees = dict(G.degree())
            start_node = max(degrees, key=degrees.get)
        
        # BFS traversal
        visited = set()
        order = []
        queue = [start_node]
        
        while queue:
            node = queue.pop(0)
            if node in visited:
                continue
                
            visited.add(node)
            order.append(node)
            
            # Add neighbors by degree (deterministic)
            neighbors = list(G.neighbors(node))
            neighbors.sort(key=lambda n: G.degree(n), reverse=True)
            
            for neighbor in neighbors:
                if neighbor not in visited:
                    queue.append(neighbor)
        
        # Add any disconnected nodes
        for node in range(num_nodes):
            if node not in visited:
                order.append(node)
        
        return torch.tensor(order, dtype=torch.long)
    
    @staticmethod
    def spectral_ordering(edge_index, num_nodes):
        """Spectral ordering using graph Laplacian eigenvector"""
        try:
            # Compute normalized Laplacian
            edge_index_np = edge_index.cpu().numpy()
            
            # Create adjacency matrix
            A = np.zeros((num_nodes, num_nodes))
            A[edge_index_np[0], edge_index_np[1]] = 1
            A[edge_index_np[1], edge_index_np[0]] = 1  # Undirected
            
            # Degree matrix
            D = np.diag(np.sum(A, axis=1))
            
            # Normalized Laplacian: L = D^(-1/2) * (D - A) * D^(-1/2)
            D_sqrt_inv = np.diag(1.0 / np.sqrt(np.maximum(np.diag(D), 1e-12)))
            L = D_sqrt_inv @ (D - A) @ D_sqrt_inv
            
            # Compute second smallest eigenvector (Fiedler vector)
            eigenvals, eigenvecs = eigsh(L, k=min(10, num_nodes-1), which='SM')
            fiedler_vector = eigenvecs[:, 1]  # Second smallest
            
            # Order by Fiedler vector values
            order = np.argsort(fiedler_vector)
            
            return torch.tensor(order, dtype=torch.long)
            
        except Exception as e:
            print(f"Spectral ordering failed: {e}, falling back to degree ordering")
            return GraphSequencer.degree_ordering(edge_index, num_nodes)
    
    @staticmethod
    def degree_ordering(edge_index, num_nodes):
        """Order nodes by degree (high to low)"""
        # Count degrees
        degrees = torch.zeros(num_nodes, dtype=torch.long)
        degrees.index_add_(0, edge_index[0], torch.ones(edge_index.shape[1], dtype=torch.long))
        degrees.index_add_(0, edge_index[1], torch.ones(edge_index.shape[1], dtype=torch.long))
        
        # Sort by degree (descending), then by node index for determinism
        _, order = torch.sort(-degrees * num_nodes - torch.arange(num_nodes))
        
        return order
    
    @staticmethod
    def community_ordering(edge_index, num_nodes, n_clusters=None):
        """Community-aware ordering using spectral clustering"""
        try:
            if n_clusters is None:
                n_clusters = max(2, min(10, num_nodes // 100))
            
            # Convert to adjacency matrix
            edge_index_np = edge_index.cpu().numpy()
            A = np.zeros((num_nodes, num_nodes))
            A[edge_index_np[0], edge_index_np[1]] = 1
            A[edge_index_np[1], edge_index_np[0]] = 1
            
            # Spectral clustering
            clustering = SpectralClustering(
                n_clusters=n_clusters, 
                affinity='precomputed',
                random_state=42
            )
            
            labels = clustering.fit_predict(A)
            
            # Order by cluster, then by degree within cluster
            degrees = np.sum(A, axis=1)
            
            order = []
            for cluster in range(n_clusters):
                cluster_nodes = np.where(labels == cluster)[0]
                cluster_degrees = degrees[cluster_nodes]
                cluster_order = cluster_nodes[np.argsort(-cluster_degrees)]
                order.extend(cluster_order)
            
            return torch.tensor(order, dtype=torch.long)
            
        except Exception as e:
            print(f"Community ordering failed: {e}, falling back to BFS ordering")
            return GraphSequencer.bfs_ordering(edge_index, num_nodes)
    
    @staticmethod
    def multi_view_ordering(edge_index, num_nodes):
        """Generate multiple orderings for different perspectives"""
        orderings = {}
        
        # Primary orderings
        orderings['bfs'] = GraphSequencer.bfs_ordering(edge_index, num_nodes)
        orderings['degree'] = GraphSequencer.degree_ordering(edge_index, num_nodes)
        orderings['spectral'] = GraphSequencer.spectral_ordering(edge_index, num_nodes)
        orderings['community'] = GraphSequencer.community_ordering(edge_index, num_nodes)
        
        return orderings

class PositionalEncoder:
    """Graph-aware positional encoding"""
    
    @staticmethod
    def encode_positions(x, edge_index, order, max_dist=10):
        """
        Create positional encodings that preserve graph structure
        """
        num_nodes = x.size(0)
        device = x.device
        
        # Sequential positions
        seq_pos = torch.zeros(num_nodes, device=device)
        seq_pos[order] = torch.arange(num_nodes, device=device, dtype=torch.float)
        
        # Graph distances (local neighborhood)
        G = nx.Graph()
        G.add_edges_from(edge_index.t().cpu().numpy())
        
        # Compute shortest path distances
        distances = torch.full((num_nodes, max_dist), float('inf'), device=device)
        
        for i, node in enumerate(order):
            # Get distances to previous nodes in sequence
            start_idx = max(0, i - max_dist)
            for j in range(start_idx, i):
                prev_node = order[j].item()
                try:
                    dist = nx.shortest_path_length(G, source=node.item(), target=prev_node)
                    distances[node, j - start_idx] = min(dist, max_dist - 1)
                except nx.NetworkXNoPath:
                    distances[node, j - start_idx] = max_dist - 1
        
        # Replace infinities with max distance
        distances[distances == float('inf')] = max_dist - 1
        
        # Normalize
        seq_pos = seq_pos / num_nodes
        distances = distances / max_dist
        
        return seq_pos.unsqueeze(1), distances