Spaces:
No application file
No application file
| import torch.nn as nn | |
| from .resnet import Resnet1D | |
| class Encoder(nn.Module): | |
| def __init__(self, | |
| input_emb_width = 3, | |
| output_emb_width = 512, | |
| down_t = 3, | |
| stride_t = 2, | |
| width = 512, | |
| depth = 3, | |
| dilation_growth_rate = 3, | |
| activation='relu', | |
| norm=None): | |
| super().__init__() | |
| blocks = [] | |
| filter_t, pad_t = stride_t * 2, stride_t // 2 | |
| blocks.append(nn.Conv1d(input_emb_width, width, 3, 1, 1)) | |
| blocks.append(nn.ReLU()) | |
| for i in range(down_t): | |
| input_dim = width | |
| block = nn.Sequential( | |
| nn.Conv1d(input_dim, width, filter_t, stride_t, pad_t), | |
| Resnet1D(width, depth, dilation_growth_rate, activation=activation, norm=norm), | |
| ) | |
| blocks.append(block) | |
| blocks.append(nn.Conv1d(width, output_emb_width, 3, 1, 1)) | |
| self.model = nn.Sequential(*blocks) | |
| def forward(self, x): | |
| return self.model(x) | |
| class Decoder(nn.Module): | |
| def __init__(self, | |
| input_emb_width = 3, | |
| output_emb_width = 512, | |
| down_t = 3, | |
| stride_t = 2, | |
| width = 512, | |
| depth = 3, | |
| dilation_growth_rate = 3, | |
| activation='relu', | |
| norm=None): | |
| super().__init__() | |
| blocks = [] | |
| filter_t, pad_t = stride_t * 2, stride_t // 2 | |
| blocks.append(nn.Conv1d(output_emb_width, width, 3, 1, 1)) | |
| blocks.append(nn.ReLU()) | |
| for i in range(down_t): | |
| out_dim = width | |
| block = nn.Sequential( | |
| Resnet1D(width, depth, dilation_growth_rate, reverse_dilation=True, activation=activation, norm=norm), | |
| nn.Upsample(scale_factor=2, mode='nearest'), | |
| nn.Conv1d(width, out_dim, 3, 1, 1) | |
| ) | |
| blocks.append(block) | |
| blocks.append(nn.Conv1d(width, width, 3, 1, 1)) | |
| blocks.append(nn.ReLU()) | |
| blocks.append(nn.Conv1d(width, input_emb_width, 3, 1, 1)) | |
| self.model = nn.Sequential(*blocks) | |
| def forward(self, x): | |
| return self.model(x) | |