Spaces:
No application file
No application file
File size: 8,745 Bytes
bb46cbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
# (CVPR 2023) T2M-GPT
Pytorch implementation of paper "T2M-GPT: Generating Human Motion from Textual Descriptions with Discrete Representations"
[[Project Page]](https://mael-zys.github.io/T2M-GPT/) [[Paper]](https://arxiv.org/abs/2301.06052) [[Notebook Demo]](https://colab.research.google.com/drive/1Vy69w2q2d-Hg19F-KibqG0FRdpSj3L4O?usp=sharing) [[HuggingFace]](https://huggingface.co/vumichien/T2M-GPT) [[Space Demo]](https://huggingface.co/spaces/vumichien/generate_human_motion)
<p align="center">
<img src="img/Teaser.png" width="600px" alt="teaser">
</p>
If our project is helpful for your research, please consider citing :
```
@inproceedings{zhang2023generating,
title={T2M-GPT: Generating Human Motion from Textual Descriptions with Discrete Representations},
author={Zhang, Jianrong and Zhang, Yangsong and Cun, Xiaodong and Huang, Shaoli and Zhang, Yong and Zhao, Hongwei and Lu, Hongtao and Shen, Xi},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2023},
}
```
## Table of Content
* [1. Visual Results](#1-visual-results)
* [2. Installation](#2-installation)
* [3. Quick Start](#3-quick-start)
* [4. Train](#4-train)
* [5. Evaluation](#5-evaluation)
* [6. SMPL Mesh Rendering](#6-smpl-mesh-rendering)
* [7. Acknowledgement](#7-acknowledgement)
* [8. ChangLog](#8-changlog)
## 1. Visual Results (More results can be found in our [project page](https://mael-zys.github.io/T2M-GPT/))
<!-- ![visualization](img/ALLvis_new.png) -->
<p align="center">
<table>
<tr>
<th colspan="5">Text: a man steps forward and does a handstand.</th>
</tr>
<tr>
<th>GT</th>
<th><u><a href="https://ericguo5513.github.io/text-to-motion/"><nobr>T2M</nobr> </a></u></th>
<th><u><a href="https://guytevet.github.io/mdm-page/"><nobr>MDM</nobr> </a></u></th>
<th><u><a href="https://mingyuan-zhang.github.io/projects/MotionDiffuse.html"><nobr>MotionDiffuse</nobr> </a></u></th>
<th>Ours</th>
</tr>
<tr>
<td><img src="img/002103_gt_16.gif" width="140px" alt="gif"></td>
<td><img src="img/002103_pred_t2m_16.gif" width="140px" alt="gif"></td>
<td><img src="img/002103_pred_mdm_16.gif" width="140px" alt="gif"></td>
<td><img src="img/002103_pred_MotionDiffuse_16.gif" width="140px" alt="gif"></td>
<td><img src="img/002103_pred_16.gif" width="140px" alt="gif"></td>
</tr>
<tr>
<th colspan="5">Text: A man rises from the ground, walks in a circle and sits back down on the ground.</th>
</tr>
<tr>
<th>GT</th>
<th><u><a href="https://ericguo5513.github.io/text-to-motion/"><nobr>T2M</nobr> </a></u></th>
<th><u><a href="https://guytevet.github.io/mdm-page/"><nobr>MDM</nobr> </a></u></th>
<th><u><a href="https://mingyuan-zhang.github.io/projects/MotionDiffuse.html"><nobr>MotionDiffuse</nobr> </a></u></th>
<th>Ours</th>
</tr>
<tr>
<td><img src="img/000066_gt_16.gif" width="140px" alt="gif"></td>
<td><img src="img/000066_pred_t2m_16.gif" width="140px" alt="gif"></td>
<td><img src="img/000066_pred_mdm_16.gif" width="140px" alt="gif"></td>
<td><img src="img/000066_pred_MotionDiffuse_16.gif" width="140px" alt="gif"></td>
<td><img src="img/000066_pred_16.gif" width="140px" alt="gif"></td>
</tr>
</table>
</p>
## 2. Installation
### 2.1. Environment
Our model can be learnt in a **single GPU V100-32G**
```bash
conda env create -f environment.yml
conda activate T2M-GPT
```
The code was tested on Python 3.8 and PyTorch 1.8.1.
### 2.2. Dependencies
```bash
bash dataset/prepare/download_glove.sh
```
### 2.3. Datasets
We are using two 3D human motion-language dataset: HumanML3D and KIT-ML. For both datasets, you could find the details as well as download link [[here]](https://github.com/EricGuo5513/HumanML3D).
Take HumanML3D for an example, the file directory should look like this:
```
./dataset/HumanML3D/
βββ new_joint_vecs/
βββ texts/
βββ Mean.npy # same as in [HumanML3D](https://github.com/EricGuo5513/HumanML3D)
βββ Std.npy # same as in [HumanML3D](https://github.com/EricGuo5513/HumanML3D)
βββ train.txt
βββ val.txt
βββ test.txt
βββ train_val.txt
βββ all.txt
```
### 2.4. Motion & text feature extractors:
We use the same extractors provided by [t2m](https://github.com/EricGuo5513/text-to-motion) to evaluate our generated motions. Please download the extractors.
```bash
bash dataset/prepare/download_extractor.sh
```
### 2.5. Pre-trained models
The pretrained model files will be stored in the 'pretrained' folder:
```bash
bash dataset/prepare/download_model.sh
```
### 2.6. Render SMPL mesh (optional)
If you want to render the generated motion, you need to install:
```bash
sudo sh dataset/prepare/download_smpl.sh
conda install -c menpo osmesa
conda install h5py
conda install -c conda-forge shapely pyrender trimesh mapbox_earcut
```
## 3. Quick Start
A quick start guide of how to use our code is available in [demo.ipynb](https://colab.research.google.com/drive/1Vy69w2q2d-Hg19F-KibqG0FRdpSj3L4O?usp=sharing)
<p align="center">
<img src="img/demo.png" width="400px" alt="demo">
</p>
## 4. Train
Note that, for kit dataset, just need to set '--dataname kit'.
### 4.1. VQ-VAE
The results are saved in the folder output.
<details>
<summary>
VQ training
</summary>
```bash
python3 train_vq.py \
--batch-size 256 \
--lr 2e-4 \
--total-iter 300000 \
--lr-scheduler 200000 \
--nb-code 512 \
--down-t 2 \
--depth 3 \
--dilation-growth-rate 3 \
--out-dir output \
--dataname t2m \
--vq-act relu \
--quantizer ema_reset \
--loss-vel 0.5 \
--recons-loss l1_smooth \
--exp-name VQVAE
```
</details>
### 4.2. GPT
The results are saved in the folder output.
<details>
<summary>
GPT training
</summary>
```bash
python3 train_t2m_trans.py \
--exp-name GPT \
--batch-size 128 \
--num-layers 9 \
--embed-dim-gpt 1024 \
--nb-code 512 \
--n-head-gpt 16 \
--block-size 51 \
--ff-rate 4 \
--drop-out-rate 0.1 \
--resume-pth output/VQVAE/net_last.pth \
--vq-name VQVAE \
--out-dir output \
--total-iter 300000 \
--lr-scheduler 150000 \
--lr 0.0001 \
--dataname t2m \
--down-t 2 \
--depth 3 \
--quantizer ema_reset \
--eval-iter 10000 \
--pkeep 0.5 \
--dilation-growth-rate 3 \
--vq-act relu
```
</details>
## 5. Evaluation
### 5.1. VQ-VAE
<details>
<summary>
VQ eval
</summary>
```bash
python3 VQ_eval.py \
--batch-size 256 \
--lr 2e-4 \
--total-iter 300000 \
--lr-scheduler 200000 \
--nb-code 512 \
--down-t 2 \
--depth 3 \
--dilation-growth-rate 3 \
--out-dir output \
--dataname t2m \
--vq-act relu \
--quantizer ema_reset \
--loss-vel 0.5 \
--recons-loss l1_smooth \
--exp-name TEST_VQVAE \
--resume-pth output/VQVAE/net_last.pth
```
</details>
### 5.2. GPT
<details>
<summary>
GPT eval
</summary>
Follow the evaluation setting of [text-to-motion](https://github.com/EricGuo5513/text-to-motion), we evaluate our model 20 times and report the average result. Due to the multimodality part where we should generate 30 motions from the same text, the evaluation takes a long time.
```bash
python3 GPT_eval_multi.py \
--exp-name TEST_GPT \
--batch-size 128 \
--num-layers 9 \
--embed-dim-gpt 1024 \
--nb-code 512 \
--n-head-gpt 16 \
--block-size 51 \
--ff-rate 4 \
--drop-out-rate 0.1 \
--resume-pth output/VQVAE/net_last.pth \
--vq-name VQVAE \
--out-dir output \
--total-iter 300000 \
--lr-scheduler 150000 \
--lr 0.0001 \
--dataname t2m \
--down-t 2 \
--depth 3 \
--quantizer ema_reset \
--eval-iter 10000 \
--pkeep 0.5 \
--dilation-growth-rate 3 \
--vq-act relu \
--resume-trans output/GPT/net_best_fid.pth
```
</details>
## 6. SMPL Mesh Rendering
<details>
<summary>
SMPL Mesh Rendering
</summary>
You should input the npy folder address and the motion names. Here is an example:
```bash
python3 render_final.py --filedir output/TEST_GPT/ --motion-list 000019 005485
```
</details>
### 7. Acknowledgement
We appreciate helps from :
* public code like [text-to-motion](https://github.com/EricGuo5513/text-to-motion), [TM2T](https://github.com/EricGuo5513/TM2T), [MDM](https://github.com/GuyTevet/motion-diffusion-model), [MotionDiffuse](https://github.com/mingyuan-zhang/MotionDiffuse) etc.
* <a href='https://mathis.petrovich.fr/'>Mathis Petrovich</a>, <a href='https://dulucas.github.io/'>Yuming Du</a>, <a href='https://github.com/yingyichen-cyy'>Yingyi Chen</a>, <a href='https://dexiong.me/'>Dexiong Chen</a> and <a href='https://xuelin-chen.github.io/'>Xuelin Chen</a> for inspiring discussions and valuable feedback.
* <a href='https://github.com/vumichien'>Minh Chien Vu</a> for the hugging face space demo.
### 8. ChangLog
* 2023/02/19 add the hugging face space demo for both skelton and SMPL mesh visualization.
|