Spaces:
Runtime error
Runtime error
File size: 11,422 Bytes
6cd90b7 555504f 6cd90b7 85eb645 6cd90b7 f64074e 6cd90b7 a63184f 6cd90b7 76c0be6 6cd90b7 a63184f 6cd90b7 a63184f 6cd90b7 a63184f 6cd90b7 a63184f 8634f14 a63184f 8634f14 a63184f 8634f14 a63184f 6cd90b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
"""Run a Gradio demo of the CaR model on a single image."""
import os
import numpy as np
import argparse
from functools import reduce
import PIL.Image as Image
import torch
from modeling.model.car import CaR
from utils.utils import Config, load_yaml
import matplotlib.pyplot as plt
import colorsys
from modeling.post_process.post_process import match_masks, generate_masks_from_sam
from sam.sam import SAMPipeline
from sam.utils import build_sam_config
import random
import gradio as gr
# set random seed
random.seed(15)
np.random.seed(0)
torch.manual_seed(0)
# os.system("wget https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_l.pth")
os.system("wget https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_tiny.pth")
CFG_PATH = "configs/demo/pokemon.yaml"
def generate_distinct_colors(n):
colors = []
# generate a random number from 0 to 1
random_color_bias = random.random()
for i in range(n):
hue = float(i) / n
hue += random_color_bias
hue = hue % 1.0
rgb = colorsys.hsv_to_rgb(hue, 1.0, 1.0)
# Convert RGB values from [0, 1] range to [0, 255]
colors.append(tuple(int(val * 255) for val in rgb))
return colors
def overlap_masks(masks):
"""
Overlap masks to generate a single mask for visualization.
Parameters:
- masks: list of np.arrays of shape (H, W) representing binary masks for each class
Returns:
- overlap_mask: list of np.array of shape (H, W) that have no overlaps
"""
overlap_mask = torch.zeros_like(masks[0])
for mask_idx, mask in enumerate(masks):
overlap_mask[mask > 0] = mask_idx + 1
clean_masks = [overlap_mask == mask_idx +
1 for mask_idx in range(len(masks))]
clean_masks = torch.stack(clean_masks, dim=0)
return clean_masks
def visualize_segmentation(image,
masks,
class_names,
alpha=0.7,
y_list=None,
x_list=None):
"""
Visualize segmentation masks on an image.
Parameters:
- image: np.array of shape (H, W, 3) representing the RGB image
- masks: list of np.arrays of shape (H, W) representing binary masks for each class
- class_names: list of strings representing names of each class
- alpha: float, transparency level of masks on the image
Returns:
- visualization: plt.figure object
"""
# Create a figure and axis
fig, ax = plt.subplots(1, figsize=(12, 9))
# Display the image
# Generate distinct colors for each mask
final_mask = np.zeros(
(masks.shape[1], masks.shape[2], 3), dtype=np.float32)
binary_final_mask = np.zeros(
(masks.shape[1], masks.shape[2]), dtype=np.float32)
colors = generate_distinct_colors(len(class_names))
idx = 0
for mask, color, class_name in zip(masks, colors, class_names):
# Overlay the mask
final_mask += np.dstack([mask * c for c in color])
binary_final_mask += mask
# Find a representative point (e.g., centroid) for placing the label
if y_list is None or x_list is None:
y, x = np.argwhere(mask).mean(axis=0)
else:
y, x = y_list[idx], x_list[idx]
ax.text(x, y, class_name, color='white',
fontsize=22, va='center', ha='center',
bbox=dict(facecolor='black', alpha=0.7, edgecolor='none'))
idx += 1
image[binary_final_mask > 0] = image[binary_final_mask > 0] * (1 - alpha)
final_image = image + final_mask * alpha
final_image = final_image.astype(np.uint8)
plt.subplots_adjust(left=0, right=1, top=1, bottom=0, wspace=0, hspace=0)
ax.imshow(final_image)
# Remove axis ticks and labels
ax.axis('off')
return fig
def get_sam_masks(cfg,
masks,
image_path=None,
img_sam=None,
pipeline=None):
print("generating sam masks online")
if img_sam is None and image_path is not None:
raise ValueError(
'Please provide either the image path or the image numpy array.')
mask_tensor, mask_list = generate_masks_from_sam(
image_path,
save_path='./',
pipeline=pipeline,
img_sam=img_sam,
visualize=False,
)
mask_tensor = mask_tensor.to(masks.device)
# only conduct sam on masks that is not all zero
attn_map, mask_ids = [], []
for mask_id, mask in enumerate(masks):
if torch.sum(mask) > 0:
attn_map.append(mask.unsqueeze(0))
mask_ids.append(mask_id)
matched_masks = [match_masks(
mask_tensor,
attn,
mask_list,
iom_thres=cfg.car.iom_thres,
min_pred_threshold=cfg.sam.min_pred_threshold)
for attn in attn_map]
for matched_mask, mask_id in zip(matched_masks, mask_ids):
sam_masks = np.array([item['segmentation'] for item in matched_mask])
sam_mask = np.any(sam_masks, axis=0)
masks[mask_id] = torch.from_numpy(sam_mask).to(masks.device)
return masks
def load_sam(cfg, device):
sam_checkpoint, model_type = build_sam_config(cfg)
pipeline = SAMPipeline(
sam_checkpoint,
model_type,
device=device,
points_per_side=cfg.sam.points_per_side,
pred_iou_thresh=cfg.sam.pred_iou_thresh,
stability_score_thresh=cfg.sam.stability_score_thresh,
box_nms_thresh=cfg.sam.box_nms_thresh,
)
return pipeline
def generate(img,
class_names,
clip_thresh,
mask_thresh,
confidence_thresh,
post_process,
stability_score_thresh,
box_nms_thresh,
iom_thres,
min_pred_threshold):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
cfg = Config(**load_yaml(CFG_PATH))
cfg.car.clipes_threshold = clip_thresh
cfg.car.mask_threshold = mask_thresh
cfg.car.confidence_threshold = confidence_thresh
cfg.sam.stability_score_thresh = stability_score_thresh
cfg.sam.box_nms_thresh = box_nms_thresh
cfg.car.iom_thres = iom_thres
cfg.sam.min_pred_threshold = min_pred_threshold
car_model = CaR(cfg,
visualize=True,
seg_mode='semantic',
device=device)
# resize image by dividing 2 if the size is larger than 1000
if img.size[0] > 1000:
img = img.resize((img.size[0] // 2, img.size[1] // 2))
y_list, x_list = None, None
class_names = class_names.split(',')
sentences = class_names
# class_names = ['the women chatting', 'the women chatting', 'table', 'fridge', 'cooking pot']
pseudo_masks, _ = car_model(img, sentences)
if post_process == 'SAM':
pipeline = load_sam(cfg, device)
pseudo_masks = get_sam_masks(
cfg,
pseudo_masks,
image_path=None,
img_sam=np.array(img),
pipeline=pipeline)
pseudo_masks = overlap_masks(pseudo_masks)
# visualize segmentation masks
demo_fig = visualize_segmentation(np.array(img),
pseudo_masks.detach().cpu().numpy(),
class_names,
y_list=y_list,
x_list=x_list)
# convert the demo figure to an pil image
demo_fig.canvas.draw()
demo_img = np.array(demo_fig.canvas.renderer._renderer)
demo_img = Image.fromarray(demo_img)
return demo_img
if __name__ == "__main__":
parser = argparse.ArgumentParser('car')
parser.add_argument("--cfg-path",
default='configs/local_car.yaml',
help="path to configuration file.")
args = parser.parse_args()
demo = gr.Interface(generate,
inputs=[gr.Image(label="upload an image", type="pil"),
"text",
gr.Slider(label="clip thresh",
minimum=0,
maximum=1,
value=0.4,
step=0.1,
info="the threshold for clip-es adversarial heatmap clipping"),
gr.Slider(label="mask thresh",
minimum=0,
maximum=1,
value=0.6,
step=0.1,
info="the binariation threshold for the mask to generate visual prompt"),
gr.Slider(label="confidence thresh",
minimum=0,
maximum=1,
value=0,
step=0.1,
info="the threshold for filtering the proposed classes"),
gr.Radio(["CRF", "SAM"], label="post process",
value="CRF", info="choose the post process method"),
gr.Slider(label="stability score thresh for SAM mask proposal \n(only when SAM is chosen for post process)",
minimum=0,
maximum=1,
value=0.95,
step=0.1),
gr.Slider(label="box nms thresh for SAM mask proposal \n(only when SAM is chosen for post process)",
minimum=0, maximum=1, value=0.7, step=0.1),
gr.Slider(label="intersection over mask threshold for SAM mask proposal \n(only when SAM is chosen for post process)",
minimum=0, maximum=1, value=0.5, step=0.1),
gr.Slider(label="minimum prediction threshold for SAM mask proposal \n(only when SAM is chosen for post process)", minimum=0, maximum=1, value=0.03, step=0.01)],
outputs="image",
title="CLIP as RNN: Segment Countless Visual Concepts without Training Endeavor",
description="This is the official demo for CLIP as RNN. Please upload an image and type in the class names (connected by ',' e.g. cat,dog,human) you want to segment. The model will generate the segmentation masks for the input image. You can also adjust the clip thresh, mask thresh and confidence thresh to get better results.",
examples=[["demo/pokemon.jpg", "Pikachu,Eevee", 0.6, 0.6, 0, "CRF", 0.95, 0.7, 0.6, 0.01],
["demo/Eiffel_tower.jpg", "Eiffel Tower",
0.6, 0.6, 0, "CRF", 0.95, 0.7, 0.6, 0.01],
["demo/superhero.jpeg", "Batman,Superman,Wonder Woman,Flash,Cyborg",
0.6, 0.6, 0, "CRF", 0.89, 0.65, 0.5, 0.03],
])
demo.launch(share=True)
# device = "cuda" if torch.cuda.is_available() else "cpu"
|