Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,18 +8,14 @@ from diffusers import (
|
|
| 8 |
)
|
| 9 |
from diffusers.utils import export_to_video, load_image
|
| 10 |
|
| 11 |
-
# Detect device & dtype
|
| 12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
dtype = torch.float16 if device == "cuda" else torch.float32
|
| 14 |
|
| 15 |
-
# Factory to load & offload a pipeline
|
| 16 |
def make_pipe(cls, model_id, **kwargs):
|
| 17 |
pipe = cls.from_pretrained(model_id, torch_dtype=dtype, **kwargs)
|
| 18 |
-
# Enables CPU offload of model parts not in use
|
| 19 |
pipe.enable_model_cpu_offload()
|
| 20 |
return pipe
|
| 21 |
|
| 22 |
-
# Hold pipelines in globals but don’t load yet
|
| 23 |
TXT2IMG_PIPE = None
|
| 24 |
IMG2IMG_PIPE = None
|
| 25 |
TXT2VID_PIPE = None
|
|
@@ -52,7 +48,7 @@ def generate_video_from_text(prompt):
|
|
| 52 |
"Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
|
| 53 |
).to(device)
|
| 54 |
frames = TXT2VID_PIPE(prompt=prompt, num_frames=12).frames[0]
|
| 55 |
-
return export_to_video(frames, "wan_video.mp4", fps=8)
|
| 56 |
|
| 57 |
def generate_video_from_image(image):
|
| 58 |
global IMG2VID_PIPE
|
|
@@ -60,38 +56,38 @@ def generate_video_from_image(image):
|
|
| 60 |
IMG2VID_PIPE = make_pipe(
|
| 61 |
StableVideoDiffusionPipeline,
|
| 62 |
"stabilityai/stable-video-diffusion-img2vid-xt",
|
| 63 |
-
variant="fp16" if dtype==torch.float16 else None
|
| 64 |
).to(device)
|
| 65 |
image = load_image(image).resize((512, 288))
|
| 66 |
frames = IMG2VID_PIPE(image, num_inference_steps=16).frames[0]
|
| 67 |
-
return export_to_video(frames, "svd_video.mp4", fps=8)
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 70 |
-
gr.Markdown("# 🧠 Lightweight Any‑to‑Any AI Playground")
|
| 71 |
-
|
| 72 |
with gr.Tab("Text → Image"):
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
with gr.Tab("Image → Image"):
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
with gr.Tab("Text → Video"):
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
with gr.Tab("Image → Video"):
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
|
| 97 |
demo.launch()
|
|
|
|
| 8 |
)
|
| 9 |
from diffusers.utils import export_to_video, load_image
|
| 10 |
|
|
|
|
| 11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
dtype = torch.float16 if device == "cuda" else torch.float32
|
| 13 |
|
|
|
|
| 14 |
def make_pipe(cls, model_id, **kwargs):
|
| 15 |
pipe = cls.from_pretrained(model_id, torch_dtype=dtype, **kwargs)
|
|
|
|
| 16 |
pipe.enable_model_cpu_offload()
|
| 17 |
return pipe
|
| 18 |
|
|
|
|
| 19 |
TXT2IMG_PIPE = None
|
| 20 |
IMG2IMG_PIPE = None
|
| 21 |
TXT2VID_PIPE = None
|
|
|
|
| 48 |
"Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
|
| 49 |
).to(device)
|
| 50 |
frames = TXT2VID_PIPE(prompt=prompt, num_frames=12).frames[0]
|
| 51 |
+
return export_to_video(frames, "/tmp/wan_video.mp4", fps=8)
|
| 52 |
|
| 53 |
def generate_video_from_image(image):
|
| 54 |
global IMG2VID_PIPE
|
|
|
|
| 56 |
IMG2VID_PIPE = make_pipe(
|
| 57 |
StableVideoDiffusionPipeline,
|
| 58 |
"stabilityai/stable-video-diffusion-img2vid-xt",
|
| 59 |
+
variant="fp16" if dtype == torch.float16 else None
|
| 60 |
).to(device)
|
| 61 |
image = load_image(image).resize((512, 288))
|
| 62 |
frames = IMG2VID_PIPE(image, num_inference_steps=16).frames[0]
|
| 63 |
+
return export_to_video(frames, "/tmp/svd_video.mp4", fps=8)
|
| 64 |
+
|
| 65 |
+
with gr.Blocks() as demo:
|
| 66 |
+
gr.Markdown("## 🧠 Lightweight Any-to-Any AI Playground")
|
| 67 |
|
|
|
|
|
|
|
|
|
|
| 68 |
with gr.Tab("Text → Image"):
|
| 69 |
+
text_input = gr.Textbox(label="Prompt")
|
| 70 |
+
image_output = gr.Image(label="Generated Image")
|
| 71 |
+
generate_button = gr.Button("Generate")
|
| 72 |
+
generate_button.click(generate_image_from_text, inputs=text_input, outputs=image_output)
|
| 73 |
+
|
| 74 |
with gr.Tab("Image → Image"):
|
| 75 |
+
input_image = gr.Image(label="Input Image")
|
| 76 |
+
prompt_input = gr.Textbox(label="Edit Prompt")
|
| 77 |
+
output_image = gr.Image(label="Edited Image")
|
| 78 |
+
edit_button = gr.Button("Generate")
|
| 79 |
+
edit_button.click(generate_image_from_image_and_prompt, inputs=[input_image, prompt_input], outputs=output_image)
|
| 80 |
+
|
| 81 |
with gr.Tab("Text → Video"):
|
| 82 |
+
video_prompt = gr.Textbox(label="Prompt")
|
| 83 |
+
video_output = gr.Video(label="Generated Video")
|
| 84 |
+
video_button = gr.Button("Generate")
|
| 85 |
+
video_button.click(generate_video_from_text, inputs=video_prompt, outputs=video_output)
|
| 86 |
+
|
| 87 |
with gr.Tab("Image → Video"):
|
| 88 |
+
anim_image = gr.Image(label="Input Image")
|
| 89 |
+
anim_video_output = gr.Video(label="Animated Video")
|
| 90 |
+
anim_button = gr.Button("Animate")
|
| 91 |
+
anim_button.click(generate_video_from_image, inputs=anim_image, outputs=anim_video_output)
|
| 92 |
|
| 93 |
demo.launch()
|