Spaces:
Running
Running
File size: 8,004 Bytes
aebc1ea 49901fd aebc1ea 49901fd aebc1ea 49901fd aebc1ea 49901fd aebc1ea d8710b1 aebc1ea d8710b1 aebc1ea 49901fd aebc1ea 49901fd aebc1ea fd4766d aebc1ea fd4766d aebc1ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import gradio as gr
import pandas as pd
import numpy as np
from gradio_leaderboard import Leaderboard, SelectColumns, ColumnFilter
TITLE = '''<h1>
<span style="font-variant: small-caps;">TR-RewardBench</span>: Evaluating Reward Models in Turkish
</h1>'''
INTRODUCTION_TEXT = '''
Evaluating the chat, safety, reasoning, and translation capabilities of Reward Models in Turkish. This space is a more detailed version of [M-RewardBench](https://huggingface.co/spaces/C4AI-Community/m-rewardbench) for Turkish
You can find more details (paper,code,etc.) on their space. This space uses the Turkish subset of [C4AI-Community/multilingual-reward-bench](https://hf.co/datasets/C4AI-Community/multilingual-reward-bench), I want to thank them for relasing this dataset 🤗.
Most of the current models were evaluated with max token lenght of 2048. This effects the performance since it can cut some of the text. So if you try replicating the results with higher token size
you may get slightly better results (which also depends on the model).
Due to resource limit these results are just for a single run of each model. Running each model multiple times and taking the mean would give better representation of the actual performance.
For the description of subsets you can check out the about section of the original [space](https://huggingface.co/spaces/allenai/reward-bench).
### Important warning ⚠️:
In the original [English version of the dataset](https://huggingface.co/spaces/allenai/reward-bench) it is noted that some of the models are
unintentionally contaminated. You can find more on [here](https://gist.github.com/natolambert/1aed306000c13e0e8c5bc17c1a5dd300). I doubt that models can generalize enough to have a performance boost even if they are trained with the English translation of a dataset but I just wanted to
warn anyways.
'''
class AutoEvalColumn:
model = {
"name": "Model",
"type": "markdown",
"displayed_by_default": True,
"never_hidden": True,
}
@classmethod
def add_columns_from_df(cls, df, columns):
for col in columns:
if col.lower() != 'model': # Skip if it's the model column since it's predefined
setattr(cls, col, {
"name": col,
"type": "markdown",
"displayed_by_default": True,
"never_hidden": False,
})
class AutoEvalColumnCategorical:
model = {
"name": "Model",
"type": "markdown",
"displayed_by_default": True,
"never_hidden": True,
}
@classmethod
def add_columns_from_df(cls, df, columns):
for col in columns:
if col.lower() != 'model': # Skip if it's the model column since it's predefined
setattr(cls, col, {
"name": col,
"type": "markdown",
"displayed_by_default": True,
"never_hidden": False,
})
def get_result_data():
return pd.read_csv("model_performance.csv")
def get_categorical_data():
return pd.read_csv("model_performance_categorical.csv")
def init_leaderboard(dataframe, df_class):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[
col["type"]
for col in df_class.__dict__.values()
if isinstance(col, dict)
],
select_columns=SelectColumns(
default_selection=[
col["name"]
for col in df_class.__dict__.values()
if isinstance(col, dict) and col["displayed_by_default"]
],
cant_deselect=[
col["name"]
for col in df_class.__dict__.values()
if isinstance(col, dict) and col.get("never_hidden", False)
],
label="Select Columns to Display:",
),
search_columns=["Model"],
interactive=False,
)
def format_model_link(row):
"""Format model name as HTML link if URL is available"""
model_name = row["Model"]
return model_name
from functools import partial
def format_with_color(val, min_val=50, max_val=100):
"""
Formats a value with inline green color gradient CSS.
Returns an HTML string with bold, black text and muted green background.
"""
try:
val = float(val)
if pd.isna(val):
return str(val)
# Normalize value between 50 and 100 to 0-1 range
normalized = (val - min_val) / (max_val - min_val)
# Clamp value between 0 and 1
normalized = max(0, min(1, normalized))
# Create color gradient with reduced brightness (max 200 instead of 255)
# and increased minimum intensity (50 instead of 0)
intensity = int(50 + (150 * (1 - normalized)))
# Return HTML with inline CSS - bold black text
show_val = val*100
return f'<div val={val} style="background-color: rgb({intensity}, 200, {intensity}); color: black; font-weight: bold; text-align: center; vertical-align: middle;">{show_val:.1f}</div>'
except (ValueError, TypeError):
return str(val)
demo = gr.Blocks(theme=gr.themes.Soft())
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT)
with gr.Tabs() as tabs:
with gr.TabItem("🏅 Subset performance"):
df = get_result_data()
df = df.sort_values(by="accuracy", ascending=False)
numeric_cols = df.select_dtypes(include=[np.number]).columns
global_min = df.select_dtypes(include='number').min().min()#.astype(float)
global_max = df.select_dtypes(include='number').max().max()#.astype(float)
for col in numeric_cols:
lang_format_with_color = partial(format_with_color,
min_val=global_min,
max_val=global_max,
)
df[col] = df[col].apply(lang_format_with_color)
AutoEvalColumn.add_columns_from_df(df, numeric_cols)
leaderboard = init_leaderboard(df, AutoEvalColumn)
with gr.TabItem("🏅 Categorical"):
df = get_categorical_data()
df = df.sort_values(by="Average", ascending=False)
numeric_cols = df.select_dtypes(include=[np.number]).columns
global_min = df.select_dtypes(include='number').min().min()#.astype(float)
global_max = df.select_dtypes(include='number').max().max()#.astype(float)
for col in numeric_cols:
lang_format_with_color = partial(format_with_color,
min_val=global_min,
max_val=global_max,
)
df[col] = df[col].apply(lang_format_with_color)
AutoEvalColumnCategorical.add_columns_from_df(df, numeric_cols)
leaderboard = init_leaderboard(df, AutoEvalColumnCategorical)
with gr.Row():
with gr.Accordion("📚 Citation", open=False):
citation_button = gr.Textbox(
value=r"""
@misc{kesim2024-tr-rewardbench,
author = {Ege Kesim},
title = {TR-RewardBench: Evaluating Reward Models in Turkish},
year = {2024},
publisher = {Ege Kesim},
howpublished = "\url{https://huggingface.co/spaces/kesimeg/Turkish-rewardbench"
}
@misc{gureja2024mrewardbench,
title={M-RewardBench: Evaluating Reward Models in Multilingual Settings},
author={Srishti Gureja and Lester James V. Miranda and Shayekh Bin Islam and Rishabh Maheshwary and Drishti Sharma and Gusti Winata and Nathan Lambert and Sebastian Ruder and Sara Hooker and Marzieh Fadaee},
year={2024},
eprint={2410.15522},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2410.15522},
}""",
lines=7,
label="BibTeX",
elem_id="citation-button",
show_copy_button=True,
)
demo.launch(ssr_mode=False)
|