Spaces:
Build error
Build error
Commit
·
5af1bb1
1
Parent(s):
9d8f891
Gradio App Code
Browse files
app.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import from_pretrained_keras
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import tensorflow as tf
|
| 5 |
+
import tensorflow_hub as hub
|
| 6 |
+
import tensorflow_text as text
|
| 7 |
+
from tensorflow import keras
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def make_bert_preprocessing_model(sentence_features, seq_length=128):
|
| 12 |
+
"""Returns Model mapping string features to BERT inputs.
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
sentence_features: A list with the names of string-valued features.
|
| 16 |
+
seq_length: An integer that defines the sequence length of BERT inputs.
|
| 17 |
+
|
| 18 |
+
Returns:
|
| 19 |
+
A Keras Model that can be called on a list or dict of string Tensors
|
| 20 |
+
(with the order or names, resp., given by sentence_features) and
|
| 21 |
+
returns a dict of tensors for input to BERT.
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
input_segments = [
|
| 25 |
+
tf.keras.layers.Input(shape=(), dtype=tf.string, name=ft)
|
| 26 |
+
for ft in sentence_features
|
| 27 |
+
]
|
| 28 |
+
|
| 29 |
+
# tokenize the text to word pieces
|
| 30 |
+
bert_preprocess = hub.load(bert_preprocess_path)
|
| 31 |
+
tokenizer = hub.KerasLayer(bert_preprocess.tokenize,
|
| 32 |
+
name="tokenizer")
|
| 33 |
+
|
| 34 |
+
segments = [tokenizer(s) for s in input_segments]
|
| 35 |
+
|
| 36 |
+
truncated_segments = segments
|
| 37 |
+
|
| 38 |
+
packer = hub.KerasLayer(bert_preprocess.bert_pack_inputs,
|
| 39 |
+
arguments=dict(seq_length=seq_length),
|
| 40 |
+
name="packer")
|
| 41 |
+
model_inputs = packer(truncated_segments)
|
| 42 |
+
return keras.Model(input_segments, model_inputs)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def preprocess_image(image_path, resize):
|
| 46 |
+
extension = tf.strings.split(image_path)[-1]
|
| 47 |
+
|
| 48 |
+
image = tf.io.read_file(image_path)
|
| 49 |
+
if extension == b"jpg":
|
| 50 |
+
image = tf.image.decode_jpeg(image, 3)
|
| 51 |
+
else:
|
| 52 |
+
image = tf.image.decode_png(image, 3)
|
| 53 |
+
|
| 54 |
+
image = tf.image.resize(image, resize)
|
| 55 |
+
return image
|
| 56 |
+
|
| 57 |
+
def preprocess_text(text_1, text_2):
|
| 58 |
+
|
| 59 |
+
text_1 = tf.convert_to_tensor([text_1])
|
| 60 |
+
text_2 = tf.convert_to_tensor([text_2])
|
| 61 |
+
|
| 62 |
+
output = bert_preprocess_model([text_1, text_2])
|
| 63 |
+
|
| 64 |
+
output = {feature: tf.squeeze(output[feature]) for feature in bert_input_features}
|
| 65 |
+
|
| 66 |
+
return output
|
| 67 |
+
|
| 68 |
+
def preprocess_text_and_image(sample, resize):
|
| 69 |
+
|
| 70 |
+
image_1 = preprocess_image(sample['image_1_path'], resize)
|
| 71 |
+
image_2 = preprocess_image(sample['image_2_path'], resize)
|
| 72 |
+
|
| 73 |
+
text = preprocess_text(sample['text_1'], sample['text_2'])
|
| 74 |
+
|
| 75 |
+
return {"image_1": image_1, "image_2": image_2, "text": text}
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def classify_info(image_1, text_1, image_2, text_2):
|
| 79 |
+
|
| 80 |
+
sample = dict()
|
| 81 |
+
sample['image_1_path'] = image_1
|
| 82 |
+
sample['image_2_path'] = image_2
|
| 83 |
+
sample['text_1'] = text_1
|
| 84 |
+
sample['text_2'] = text_2
|
| 85 |
+
|
| 86 |
+
dataframe = pd.DataFrame(sample, index=[0])
|
| 87 |
+
|
| 88 |
+
ds = tf.data.Dataset.from_tensor_slices((dict(dataframe), [0]))
|
| 89 |
+
ds = ds.map(lambda x, y: (preprocess_text_and_image(x, resize), y)).cache()
|
| 90 |
+
batch_size = 1
|
| 91 |
+
auto = tf.data.AUTOTUNE
|
| 92 |
+
ds = ds.batch(batch_size).prefetch(auto)
|
| 93 |
+
output = model.predict(ds)
|
| 94 |
+
|
| 95 |
+
label = np.argmax(output)
|
| 96 |
+
return labels[label]
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
model = from_pretrained_keras("keras-io/multimodal-entailment")
|
| 100 |
+
resize = (128, 128)
|
| 101 |
+
bert_input_features = ["input_word_ids", "input_type_ids", "input_mask"]
|
| 102 |
+
bert_model_path = ("https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-256_A-4/1")
|
| 103 |
+
bert_preprocess_path = "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3"
|
| 104 |
+
bert_preprocess_model = make_bert_preprocessing_model(['text_1', 'text_2'])
|
| 105 |
+
|
| 106 |
+
labels = {0: "Contradictory", 1: "Implies", 2: "No Entailment"}
|
| 107 |
+
|
| 108 |
+
resize = (128, 128)
|
| 109 |
+
image_1 = gr.inputs.Image(type="filepath")
|
| 110 |
+
image_2 = gr.inputs.Image(type="filepath")
|
| 111 |
+
|
| 112 |
+
text_1 = gr.inputs.Textbox(lines=5)
|
| 113 |
+
text_2 = gr.inputs.Textbox(lines=5)
|
| 114 |
+
|
| 115 |
+
label = gr.outputs.Label()
|
| 116 |
+
|
| 117 |
+
iface = gr.Interface(classify_info,
|
| 118 |
+
inputs=[image_1, text_1, image_2, text_2],outputs=label)
|
| 119 |
+
|
| 120 |
+
iface.launch()
|