Spaces:
Runtime error
Runtime error
Create new file
Browse files
app.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
from huggingface_hub import from_pretrained_keras
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
model = from_pretrained_keras("keras-io/deit")
|
| 7 |
+
|
| 8 |
+
classes=['dandelion','daisy','tulip','sunflower','rose']
|
| 9 |
+
image_size = 224
|
| 10 |
+
|
| 11 |
+
def classify_images(image):
|
| 12 |
+
image = tf.convert_to_tensor(image)
|
| 13 |
+
image = tf.image.resize(image, (image_size, image_size))
|
| 14 |
+
image = tf.expand_dims(image,axis=0)
|
| 15 |
+
prediction = model.predict(image)
|
| 16 |
+
prediction = tf.squeeze(tf.round(prediction))
|
| 17 |
+
text_output = str(f'{classes[(np.argmax(prediction))]}!')
|
| 18 |
+
return text_output
|
| 19 |
+
|
| 20 |
+
i = gr.inputs.Image()
|
| 21 |
+
o = gr.outputs.Textbox()
|
| 22 |
+
|
| 23 |
+
examples = [["./examples/tulip.png"], ["./examples/daisy.jpeg"], ["./examples/dandelion.jpeg"], ["./examples/rose.png"], ["./examples/sunflower.png"]]
|
| 24 |
+
title = "Distill ViT Flowers Classification"
|
| 25 |
+
description = "Upload an image or select from examples to classify flowers. [Explore model](https://huggingface.co/keras-io/deit)"
|
| 26 |
+
|
| 27 |
+
article = "<div style='text-align: center;'><a href='https://twitter.com/SatpalPatawat' target='_blank'>Space by Satpal Singh Rathore</a><br><a href='https://twitter.com/RisingSayak' target='_blank'>Keras example by Sayak Paul</a></div>"
|
| 28 |
+
gr.Interface(classify_images, i, o, allow_flagging=False, analytics_enabled=False,
|
| 29 |
+
title=title, examples=examples, description=description, article=article).launch(enable_queue=True, debug=True)
|