Spaces:
Runtime error
Runtime error
from huggingface_hub import from_pretrained_keras | |
import keras_cv | |
import gradio as gr | |
from tensorflow import keras | |
keras.mixed_precision.set_global_policy("mixed_float16") | |
resolution = 512 | |
dreambooth_model = keras_cv.models.StableDiffusion( | |
img_width=resolution, img_height=resolution, jit_compile=True, | |
) | |
loaded_diffusion_model = from_pretrained_keras("melanit/dreambooth_eighties_cars") | |
dreambooth_model._diffusion_model = loaded_diffusion_model | |
html_name = "Eighties Cars" | |
class_label = "car" | |
unique_id = "eighties_cars" | |
def generate_images(prompt: str, negative_prompt:str, batch_size: int, num_steps: int, guidance_scale: float): | |
""" | |
This function will infer the trained dreambooth (stable diffusion) model | |
Args: | |
prompt (str): The input text | |
batch_size (int): The number of images to be generated | |
num_steps (int): The number of denoising steps | |
guidance_scale (float): The Guidance Scale | |
Returns: | |
outputs (List): List of images that were generated using the model | |
""" | |
outputs = dreambooth_model.text_to_image( | |
prompt, | |
negative_prompt=negative_prompt, | |
batch_size=batch_size, | |
num_steps=num_steps, | |
unconditional_guidance_scale=guidance_scale | |
) | |
return outputs | |
with gr.Blocks() as demo: | |
gr.HTML(f"<h2 style=\"font-size: 2rem; font-weight: 700; text-align: center;\">Keras Dreambooth - {html_name} Demo</h2>") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(lines=1, value=f"a photo of {unique_id} {class_label}", label="Prompt") | |
negative_prompt = gr.Textbox(lines=1, value="", label="Negative Prompt") | |
samples = gr.Slider(minimum=1, maximum=10, value=1, step=1, label="Number of Images") | |
num_steps = gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Denoising Steps") | |
guidance_scale = gr.Slider(value=7.5, step=0.5, label="Guidance scale") | |
run = gr.Button(value="Run") | |
with gr.Column(): | |
gallery = gr.Gallery(label="Outputs").style(grid=(1,2)) | |
run.click(generate_images, inputs=[prompt, negative_prompt, samples, num_steps, guidance_scale], outputs=gallery) | |
gr.Examples([[f"photo of {unique_id} {class_label}, high quality, 8k","bad, ugly, malformed, deformed, out of frame, blurry, cropped, noisy", 4, 50, 7.5]], | |
[prompt, negative_prompt, samples, num_steps, guidance_scale], gallery, generate_images, cache_examples=True) | |
gr.Markdown('Demo created by [Lily Berkow](https://huggingface.co/melanit/)') | |
demo.launch() |