File size: 2,882 Bytes
2f6ea1f
 
 
7cc3907
 
8c18b31
 
 
7cc3907
2f6ea1f
7cc3907
2f6ea1f
014336b
ea87e63
014336b
00ed004
014336b
 
 
2f6ea1f
8c18b31
 
014336b
 
ea87e63
014336b
ea87e63
014336b
 
 
 
2f6ea1f
014336b
2f6ea1f
014336b
8c18b31
7cc3907
014336b
 
7cc3907
 
 
 
014336b
 
 
 
 
 
 
 
 
 
8c18b31
 
 
014336b
8c18b31
 
014336b
 
 
2f6ea1f
 
 
014336b
7cc3907
014336b
2f6ea1f
7cc3907
 
 
2f6ea1f
 
014336b
 
 
 
 
de81162
2f6ea1f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python)

# OpenAI Chat completion
import os
from openai import AsyncOpenAI  # importing openai for API usage
import chainlit as cl  # importing chainlit for our app
from chainlit.prompt import Prompt, PromptMessage  # importing prompt tools
from chainlit.playground.providers import ChatOpenAI  # importing ChatOpenAI tools
from dotenv import load_dotenv

load_dotenv()

# ChatOpenAI Templates
system_template = """You are a helpful assistant who focuses on communicating clearly and concisely, making sure to pay careful attention to the user's input and responding appropriately. You specialize in educating new developers on the basics of programming in a way that is easy to understand and follow. Your audience consists of non-technical students who are interested in starting careers as developers. Rather than trying to provide all possible dertails of the user's question, you focus on the essentials and encourage the user to ask follow-up questions if they need more information and to clarify their thinking.
"""

user_template = """{input}
Think through your response step by step.
"""


@cl.on_chat_start  # marks a function that will be executed at the start of a user session
async def start_chat():
    settings = {
        "model": "gpt-4o-mini",
        "temperature": 0,
        "max_tokens": 1000,
        "top_p": 1,
        "frequency_penalty": 0,
        "presence_penalty": 0,
    }

    cl.user_session.set("settings", settings)


@cl.on_message  # marks a function that should be run each time the chatbot receives a message from a user
async def main(message: cl.Message):
    settings = cl.user_session.get("settings")

    client = AsyncOpenAI()

    print(message.content)

    prompt = Prompt(
        provider=ChatOpenAI.id,
        messages=[
            PromptMessage(
                role="system",
                template=system_template,
                formatted=system_template,
            ),
            PromptMessage(
                role="user",
                template=user_template,
                formatted=user_template.format(input=message.content),
            ),
        ],
        inputs={"input": message.content},
        settings=settings,
    )

    print([m.to_openai() for m in prompt.messages])

    msg = cl.Message(content="")

    # Call OpenAI
    async for stream_resp in await client.chat.completions.create(
        messages=[m.to_openai() for m in prompt.messages], stream=True, **settings
    ):
        token = stream_resp.choices[0].delta.content
        if not token:
            token = ""
        await msg.stream_token(token)

    # Update the prompt object with the completion
    prompt.completion = msg.content
    msg.prompt = prompt

    # Send and close the message stream

    await msg.send()