Spaces:
Runtime error
Runtime error
Commit
·
7c1cb1d
1
Parent(s):
e6e581b
update app
Browse files
app.py
CHANGED
|
@@ -13,18 +13,10 @@ from transformers import pipeline
|
|
| 13 |
# spec_generator_2 = MixerTTSModel.from_pretrained("tts_en_lj_mixerttsx")
|
| 14 |
# model1 = HifiGanModel.from_pretrained(model_name="tts_en_lj_hifigan_ft_mixerttsx")
|
| 15 |
|
| 16 |
-
|
| 17 |
def greet(name):
|
| 18 |
return "Hello " + name + "!!"
|
| 19 |
|
| 20 |
-
def run():
|
| 21 |
-
|
| 22 |
-
spec_generator = FastPitchModel.from_pretrained("tts_en_fastpitch_multispeaker")
|
| 23 |
-
spec_generator.eval()
|
| 24 |
-
voc_model = HifiGanModel.from_pretrained(model_name="tts_en_hifitts_hifigan_ft_fastpitch")
|
| 25 |
-
voc_model.eval()
|
| 26 |
-
|
| 27 |
-
pipe = pipeline("text-to-speech", model="suno/bark-small")
|
| 28 |
|
| 29 |
def generate_tts(text: str, speaker: int = 0):
|
| 30 |
sr = 44100
|
|
@@ -32,17 +24,25 @@ def run():
|
|
| 32 |
spectrogram = spec_generator.generate_spectrogram(tokens=parsed, speaker=speaker)
|
| 33 |
audio = voc_model.convert_spectrogram_to_audio(spec=spectrogram)
|
| 34 |
|
| 35 |
-
return (sr, audio.squeeze(0).cpu().numpy())
|
| 36 |
|
| 37 |
demo = gr.Interface(
|
| 38 |
fn=generate_tts,
|
| 39 |
inputs=[gr.Textbox(value="This is a test.", label="Text to Synthesize"),
|
| 40 |
gr.Slider(0, 10, step=1, label="Speaker")],
|
| 41 |
outputs=gr.Audio(label="Output", type="numpy"),
|
|
|
|
| 42 |
)
|
| 43 |
|
| 44 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
| 45 |
|
| 46 |
-
|
| 47 |
if __name__ == "__main__":
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
# spec_generator_2 = MixerTTSModel.from_pretrained("tts_en_lj_mixerttsx")
|
| 14 |
# model1 = HifiGanModel.from_pretrained(model_name="tts_en_lj_hifigan_ft_mixerttsx")
|
| 15 |
|
|
|
|
| 16 |
def greet(name):
|
| 17 |
return "Hello " + name + "!!"
|
| 18 |
|
| 19 |
+
def run(spec_generator, voc_model, pipe):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
def generate_tts(text: str, speaker: int = 0):
|
| 22 |
sr = 44100
|
|
|
|
| 24 |
spectrogram = spec_generator.generate_spectrogram(tokens=parsed, speaker=speaker)
|
| 25 |
audio = voc_model.convert_spectrogram_to_audio(spec=spectrogram)
|
| 26 |
|
| 27 |
+
return gr.Audio.update(sr, audio.squeeze(0).cpu().numpy())
|
| 28 |
|
| 29 |
demo = gr.Interface(
|
| 30 |
fn=generate_tts,
|
| 31 |
inputs=[gr.Textbox(value="This is a test.", label="Text to Synthesize"),
|
| 32 |
gr.Slider(0, 10, step=1, label="Speaker")],
|
| 33 |
outputs=gr.Audio(label="Output", type="numpy"),
|
| 34 |
+
allow_flagging=False,
|
| 35 |
)
|
| 36 |
|
| 37 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
| 38 |
|
|
|
|
| 39 |
if __name__ == "__main__":
|
| 40 |
+
|
| 41 |
+
spec_generator = FastPitchModel.from_pretrained("tts_en_fastpitch_multispeaker")
|
| 42 |
+
spec_generator.eval()
|
| 43 |
+
voc_model = HifiGanModel.from_pretrained(model_name="tts_en_hifitts_hifigan_ft_fastpitch")
|
| 44 |
+
voc_model.eval()
|
| 45 |
+
|
| 46 |
+
pipe = pipeline("text-to-speech", model="suno/bark-small")
|
| 47 |
+
|
| 48 |
+
run(spec_generator, voc_model, pipe)
|