Commit 
							
							·
						
						d2cea93
	
1
								Parent(s):
							
							ec270ef
								
Upload app.py
Browse files
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,151 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import gradio as gr
         | 
| 2 | 
            +
            import os 
         | 
| 3 | 
            +
            import json 
         | 
| 4 | 
            +
            import requests
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            #Streaming endpoint 
         | 
| 7 | 
            +
            API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"
         | 
| 8 | 
            +
            OPENAI_API_KEY= os.environ["HF_TOKEN"] # Add a token to this space .  Then copy it to the repository secret in this spaces settings panel.  os.environ reads from there.
         | 
| 9 | 
            +
            # Keys for Open AI ChatGPT API usage are created from here: https://platform.openai.com/account/api-keys
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):  #repetition_penalty, top_k
         | 
| 12 | 
            +
             | 
| 13 | 
            +
                # 1. Set up a payload
         | 
| 14 | 
            +
                payload = {
         | 
| 15 | 
            +
                "model": "gpt-3.5-turbo",
         | 
| 16 | 
            +
                "messages": [{"role": "user", "content": f"{inputs}"}],
         | 
| 17 | 
            +
                "temperature" : 1.0,
         | 
| 18 | 
            +
                "top_p":1.0,
         | 
| 19 | 
            +
                "n" : 1,
         | 
| 20 | 
            +
                "stream": True,
         | 
| 21 | 
            +
                "presence_penalty":0,
         | 
| 22 | 
            +
                "frequency_penalty":0,
         | 
| 23 | 
            +
                }
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                # 2. Define your headers and add a key from https://platform.openai.com/account/api-keys
         | 
| 26 | 
            +
                headers = {
         | 
| 27 | 
            +
                "Content-Type": "application/json",
         | 
| 28 | 
            +
                "Authorization": f"Bearer {OPENAI_API_KEY}"
         | 
| 29 | 
            +
                }
         | 
| 30 | 
            +
             | 
| 31 | 
            +
                # 3. Create a chat counter loop that feeds [Predict next best anything based on last input and attention with memory defined by introspective attention over time]
         | 
| 32 | 
            +
                print(f"chat_counter - {chat_counter}")
         | 
| 33 | 
            +
                if chat_counter != 0 :
         | 
| 34 | 
            +
                    messages=[]
         | 
| 35 | 
            +
                    for data in chatbot:
         | 
| 36 | 
            +
                      temp1 = {}
         | 
| 37 | 
            +
                      temp1["role"] = "user" 
         | 
| 38 | 
            +
                      temp1["content"] = data[0] 
         | 
| 39 | 
            +
                      temp2 = {}
         | 
| 40 | 
            +
                      temp2["role"] = "assistant" 
         | 
| 41 | 
            +
                      temp2["content"] = data[1]
         | 
| 42 | 
            +
                      messages.append(temp1)
         | 
| 43 | 
            +
                      messages.append(temp2)
         | 
| 44 | 
            +
                    temp3 = {}
         | 
| 45 | 
            +
                    temp3["role"] = "user" 
         | 
| 46 | 
            +
                    temp3["content"] = inputs
         | 
| 47 | 
            +
                    messages.append(temp3)
         | 
| 48 | 
            +
                    #messages
         | 
| 49 | 
            +
                    payload = {
         | 
| 50 | 
            +
                    "model": "gpt-3.5-turbo",
         | 
| 51 | 
            +
                    "messages": messages, #[{"role": "user", "content": f"{inputs}"}],
         | 
| 52 | 
            +
                    "temperature" : temperature, #1.0,
         | 
| 53 | 
            +
                    "top_p": top_p, #1.0,
         | 
| 54 | 
            +
                    "n" : 1,
         | 
| 55 | 
            +
                    "stream": True,
         | 
| 56 | 
            +
                    "presence_penalty":0,
         | 
| 57 | 
            +
                    "frequency_penalty":0,
         | 
| 58 | 
            +
                    }
         | 
| 59 | 
            +
                chat_counter+=1
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                # 4. POST it to OPENAI API
         | 
| 62 | 
            +
                history.append(inputs)
         | 
| 63 | 
            +
                print(f"payload is - {payload}")
         | 
| 64 | 
            +
                # make a POST request to the API endpoint using the requests.post method, passing in stream=True
         | 
| 65 | 
            +
                response = requests.post(API_URL, headers=headers, json=payload, stream=True)
         | 
| 66 | 
            +
                #response = requests.post(API_URL, headers=headers, json=payload, stream=True)
         | 
| 67 | 
            +
                token_counter = 0 
         | 
| 68 | 
            +
                partial_words = "" 
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                # 5. Iterate through response lines and structure readable response
         | 
| 71 | 
            +
                # TODO - make this parse out markdown so we can have similar interface
         | 
| 72 | 
            +
                counter=0
         | 
| 73 | 
            +
                for chunk in response.iter_lines():
         | 
| 74 | 
            +
                    #Skipping first chunk
         | 
| 75 | 
            +
                    if counter == 0:
         | 
| 76 | 
            +
                      counter+=1
         | 
| 77 | 
            +
                      continue
         | 
| 78 | 
            +
                    #counter+=1
         | 
| 79 | 
            +
                    # check whether each line is non-empty
         | 
| 80 | 
            +
                    if chunk.decode() :
         | 
| 81 | 
            +
                      chunk = chunk.decode()
         | 
| 82 | 
            +
                      # decode each line as response data is in bytes
         | 
| 83 | 
            +
                      if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
         | 
| 84 | 
            +
                          #if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
         | 
| 85 | 
            +
                          #  break
         | 
| 86 | 
            +
                          partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
         | 
| 87 | 
            +
                          if token_counter == 0:
         | 
| 88 | 
            +
                            history.append(" " + partial_words)
         | 
| 89 | 
            +
                          else:
         | 
| 90 | 
            +
                            history[-1] = partial_words
         | 
| 91 | 
            +
                          chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ]  # convert to tuples of list
         | 
| 92 | 
            +
                          token_counter+=1
         | 
| 93 | 
            +
                          yield chat, history, chat_counter  # resembles {chatbot: chat, state: history}  
         | 
| 94 | 
            +
                               
         | 
| 95 | 
            +
             | 
| 96 | 
            +
            def reset_textbox():
         | 
| 97 | 
            +
                return gr.update(value='')
         | 
| 98 | 
            +
             | 
| 99 | 
            +
            title = """<h1 align="center">Memory Chat Story Generator ChatGPT</h1>"""
         | 
| 100 | 
            +
            description = """
         | 
| 101 | 
            +
             | 
| 102 | 
            +
            ## ChatGPT Datasets 📚
         | 
| 103 | 
            +
            - WebText
         | 
| 104 | 
            +
            - Common Crawl
         | 
| 105 | 
            +
            - BooksCorpus
         | 
| 106 | 
            +
            - English Wikipedia
         | 
| 107 | 
            +
            - Toronto Books Corpus
         | 
| 108 | 
            +
            - OpenWebText
         | 
| 109 | 
            +
             | 
| 110 | 
            +
            ## ChatGPT Datasets - Details 📚
         | 
| 111 | 
            +
            - **WebText:** A dataset of web pages crawled from domains on the Alexa top 5,000 list. This dataset was used to pretrain GPT-2.
         | 
| 112 | 
            +
              - [WebText: A Large-Scale Unsupervised Text Corpus by Radford et al.](https://paperswithcode.com/dataset/webtext)
         | 
| 113 | 
            +
            - **Common Crawl:** A dataset of web pages from a variety of domains, which is updated regularly. This dataset was used to pretrain GPT-3.
         | 
| 114 | 
            +
              - [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/common-crawl) by Brown et al.
         | 
| 115 | 
            +
            - **BooksCorpus:** A dataset of over 11,000 books from a variety of genres.
         | 
| 116 | 
            +
              - [Scalable Methods for 8 Billion Token Language Modeling](https://paperswithcode.com/dataset/bookcorpus) by Zhu et al.
         | 
| 117 | 
            +
            - **English Wikipedia:** A dump of the English-language Wikipedia as of 2018, with articles from 2001-2017.
         | 
| 118 | 
            +
              - [Improving Language Understanding by Generative Pre-Training](https://huggingface.co/spaces/awacke1/WikipediaUltimateAISearch?logs=build) Space for Wikipedia Search
         | 
| 119 | 
            +
            - **Toronto Books Corpus:** A dataset of over 7,000 books from a variety of genres, collected by the University of Toronto.
         | 
| 120 | 
            +
              - [Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond](https://paperswithcode.com/dataset/bookcorpus) by Schwenk and Douze.
         | 
| 121 | 
            +
            - **OpenWebText:** A dataset of web pages that were filtered to remove content that was likely to be low-quality or spammy. This dataset was used to pretrain GPT-3.
         | 
| 122 | 
            +
              - [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/openwebtext) by Brown et al.
         | 
| 123 | 
            +
              
         | 
| 124 | 
            +
              """
         | 
| 125 | 
            +
             | 
| 126 | 
            +
            # 6. Use Gradio to pull it all together
         | 
| 127 | 
            +
            with gr.Blocks(css = """#col_container {width: 1000px; margin-left: auto; margin-right: auto;}
         | 
| 128 | 
            +
                            #chatbot {height: 520px; overflow: auto;}""") as demo:
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                                
         | 
| 131 | 
            +
                gr.HTML(title)
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                                
         | 
| 134 | 
            +
                with gr.Column(elem_id = "col_container"):
         | 
| 135 | 
            +
                    chatbot = gr.Chatbot(elem_id='chatbot') #c
         | 
| 136 | 
            +
                    inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter") #t
         | 
| 137 | 
            +
                    state = gr.State([]) #s
         | 
| 138 | 
            +
                    b1 = gr.Button()
         | 
| 139 | 
            +
                
         | 
| 140 | 
            +
                    with gr.Accordion("Parameters", open=False):
         | 
| 141 | 
            +
                        top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
         | 
| 142 | 
            +
                        temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
         | 
| 143 | 
            +
                        chat_counter = gr.Number(value=0, visible=False, precision=0)
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                inputs.submit( predict, [inputs, top_p, temperature,chat_counter, chatbot, state], [chatbot, state, chat_counter],)
         | 
| 146 | 
            +
                b1.click( predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
         | 
| 147 | 
            +
                b1.click(reset_textbox, [], [inputs])
         | 
| 148 | 
            +
                inputs.submit(reset_textbox, [], [inputs])
         | 
| 149 | 
            +
                                
         | 
| 150 | 
            +
                gr.Markdown(description)
         | 
| 151 | 
            +
                demo.queue().launch(debug=True)
         |