Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,7 @@ import sahi
|
|
| 3 |
import torch
|
| 4 |
from ultralyticsplus import YOLO, render_model_output
|
| 5 |
|
| 6 |
-
# Download
|
| 7 |
sahi.utils.file.download_from_url(
|
| 8 |
"https://raw.githubusercontent.com/kadirnar/dethub/main/data/images/highway.jpg",
|
| 9 |
"highway.jpg",
|
|
@@ -17,7 +17,7 @@ sahi.utils.file.download_from_url(
|
|
| 17 |
"zidane.jpg",
|
| 18 |
)
|
| 19 |
|
| 20 |
-
#
|
| 21 |
model_names = [
|
| 22 |
"yolov8n-seg.pt",
|
| 23 |
"yolov8s-seg.pt",
|
|
@@ -26,18 +26,19 @@ model_names = [
|
|
| 26 |
"yolov8x-seg.pt",
|
| 27 |
]
|
| 28 |
|
|
|
|
| 29 |
current_model_name = "yolov8m-seg.pt"
|
| 30 |
model = YOLO(current_model_name)
|
| 31 |
|
| 32 |
def yolov8_inference(
|
| 33 |
image: gr.Image = None,
|
| 34 |
-
model_name:
|
| 35 |
-
image_size:
|
| 36 |
-
conf_threshold:
|
| 37 |
-
iou_threshold:
|
| 38 |
):
|
| 39 |
"""
|
| 40 |
-
YOLOv8 inference function
|
| 41 |
Args:
|
| 42 |
image: Input image
|
| 43 |
model_name: Name of the model
|
|
@@ -45,85 +46,66 @@ def yolov8_inference(
|
|
| 45 |
conf_threshold: Confidence threshold
|
| 46 |
iou_threshold: IOU threshold
|
| 47 |
Returns:
|
| 48 |
-
|
| 49 |
"""
|
| 50 |
global model
|
| 51 |
global current_model_name
|
| 52 |
-
|
| 53 |
-
# Check if a new model is selected
|
| 54 |
if model_name != current_model_name:
|
| 55 |
model = YOLO(model_name)
|
| 56 |
current_model_name = model_name
|
| 57 |
|
| 58 |
-
# Set
|
| 59 |
model.overrides["conf"] = conf_threshold
|
| 60 |
model.overrides["iou"] = iou_threshold
|
| 61 |
|
| 62 |
-
# Perform model
|
| 63 |
results = model.predict(image, imgsz=image_size, return_outputs=True)
|
| 64 |
-
|
| 65 |
-
# Initialize an empty list to store the output
|
| 66 |
-
output = []
|
| 67 |
|
| 68 |
-
|
| 69 |
for result in results:
|
| 70 |
-
|
| 71 |
-
if 'masks' in result and result['masks'] is not None:
|
| 72 |
-
masks = result['masks']['data']
|
| 73 |
-
for i, (mask, box) in enumerate(zip(masks, result['boxes'])):
|
| 74 |
-
label = model.names[int(result['boxes']['cls'][i])]
|
| 75 |
-
mask_coords = mask.tolist() # Convert mask coordinates to list format
|
| 76 |
-
output.append({"label": label, "mask_coords": mask_coords})
|
| 77 |
-
else:
|
| 78 |
-
# If masks are not available, just extract bounding box information
|
| 79 |
-
for i, box in enumerate(result['boxes']):
|
| 80 |
-
label = model.names[int(result['boxes']['cls'][i])]
|
| 81 |
-
bbox = box['xyxy'].tolist() # Bounding box coordinates
|
| 82 |
-
output.append({"label": label, "bbox_coords": bbox})
|
| 83 |
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
-
#
|
|
|
|
|
|
|
|
|
|
| 87 |
inputs = [
|
| 88 |
gr.Image(type="filepath", label="Input Image"),
|
| 89 |
-
gr.Dropdown(
|
| 90 |
-
model_names,
|
| 91 |
-
value=current_model_name,
|
| 92 |
-
label="Model type",
|
| 93 |
-
),
|
| 94 |
gr.Slider(minimum=320, maximum=1280, value=640, step=32, label="Image Size"),
|
| 95 |
-
gr.Slider(
|
| 96 |
-
minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"
|
| 97 |
-
),
|
| 98 |
gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
|
| 99 |
]
|
| 100 |
|
| 101 |
-
|
| 102 |
-
outputs = gr.JSON(label="Output Masks and Labels")
|
| 103 |
-
|
| 104 |
-
title = "Ultralytics YOLOv8 Segmentation Demo"
|
| 105 |
|
| 106 |
-
# Example
|
| 107 |
examples = [
|
| 108 |
["zidane.jpg", "yolov8m-seg.pt", 640, 0.6, 0.45],
|
| 109 |
["highway.jpg", "yolov8m-seg.pt", 640, 0.25, 0.45],
|
| 110 |
["small-vehicles1.jpeg", "yolov8m-seg.pt", 640, 0.25, 0.45],
|
| 111 |
]
|
| 112 |
|
| 113 |
-
#
|
| 114 |
demo_app = gr.Interface(
|
| 115 |
fn=yolov8_inference,
|
| 116 |
inputs=inputs,
|
| 117 |
outputs=outputs,
|
| 118 |
-
title=
|
| 119 |
examples=examples,
|
| 120 |
-
cache_examples=
|
| 121 |
-
theme="default",
|
| 122 |
)
|
| 123 |
|
| 124 |
-
# Launch the app
|
| 125 |
-
demo_app.
|
| 126 |
-
enable_queue=True, # Allow for API-style interactions
|
| 127 |
debug=True, # Show detailed errors in case of issues
|
| 128 |
server_name="0.0.0.0", # Host on all IPs
|
| 129 |
server_port=7860, # Custom port for accessing the app
|
|
|
|
| 3 |
import torch
|
| 4 |
from ultralyticsplus import YOLO, render_model_output
|
| 5 |
|
| 6 |
+
# Download images for the demo
|
| 7 |
sahi.utils.file.download_from_url(
|
| 8 |
"https://raw.githubusercontent.com/kadirnar/dethub/main/data/images/highway.jpg",
|
| 9 |
"highway.jpg",
|
|
|
|
| 17 |
"zidane.jpg",
|
| 18 |
)
|
| 19 |
|
| 20 |
+
# Define available YOLOv8 segmentation models
|
| 21 |
model_names = [
|
| 22 |
"yolov8n-seg.pt",
|
| 23 |
"yolov8s-seg.pt",
|
|
|
|
| 26 |
"yolov8x-seg.pt",
|
| 27 |
]
|
| 28 |
|
| 29 |
+
# Load the initial YOLOv8 model
|
| 30 |
current_model_name = "yolov8m-seg.pt"
|
| 31 |
model = YOLO(current_model_name)
|
| 32 |
|
| 33 |
def yolov8_inference(
|
| 34 |
image: gr.Image = None,
|
| 35 |
+
model_name: gr.Dropdown = None,
|
| 36 |
+
image_size: gr.Slider = 640,
|
| 37 |
+
conf_threshold: gr.Slider = 0.25,
|
| 38 |
+
iou_threshold: gr.Slider = 0.45,
|
| 39 |
):
|
| 40 |
"""
|
| 41 |
+
YOLOv8 inference function
|
| 42 |
Args:
|
| 43 |
image: Input image
|
| 44 |
model_name: Name of the model
|
|
|
|
| 46 |
conf_threshold: Confidence threshold
|
| 47 |
iou_threshold: IOU threshold
|
| 48 |
Returns:
|
| 49 |
+
Rendered image and mask coordinates with labels
|
| 50 |
"""
|
| 51 |
global model
|
| 52 |
global current_model_name
|
| 53 |
+
# Switch model if a different one is selected
|
|
|
|
| 54 |
if model_name != current_model_name:
|
| 55 |
model = YOLO(model_name)
|
| 56 |
current_model_name = model_name
|
| 57 |
|
| 58 |
+
# Set model confidence and IOU thresholds
|
| 59 |
model.overrides["conf"] = conf_threshold
|
| 60 |
model.overrides["iou"] = iou_threshold
|
| 61 |
|
| 62 |
+
# Perform inference with the YOLO model
|
| 63 |
results = model.predict(image, imgsz=image_size, return_outputs=True)
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
masks = []
|
| 66 |
for result in results:
|
| 67 |
+
masks.append([result.masks, result.labels])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
renders = []
|
| 70 |
+
for image_results in results:
|
| 71 |
+
render = render_model_output(
|
| 72 |
+
model=model, image=image, model_output=image_results
|
| 73 |
+
)
|
| 74 |
+
renders.append(render)
|
| 75 |
|
| 76 |
+
# Return mask coordinates and labels
|
| 77 |
+
return masks
|
| 78 |
+
|
| 79 |
+
# Gradio app inputs and outputs
|
| 80 |
inputs = [
|
| 81 |
gr.Image(type="filepath", label="Input Image"),
|
| 82 |
+
gr.Dropdown(model_names, value=current_model_name, label="Model type"),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
gr.Slider(minimum=320, maximum=1280, value=640, step=32, label="Image Size"),
|
| 84 |
+
gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"),
|
|
|
|
|
|
|
| 85 |
gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
|
| 86 |
]
|
| 87 |
|
| 88 |
+
outputs = gr.Textbox(label="Mask Coordinates and Labels")
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
+
# Example inputs for the Gradio app
|
| 91 |
examples = [
|
| 92 |
["zidane.jpg", "yolov8m-seg.pt", 640, 0.6, 0.45],
|
| 93 |
["highway.jpg", "yolov8m-seg.pt", 640, 0.25, 0.45],
|
| 94 |
["small-vehicles1.jpeg", "yolov8m-seg.pt", 640, 0.25, 0.45],
|
| 95 |
]
|
| 96 |
|
| 97 |
+
# Create the Gradio app interface
|
| 98 |
demo_app = gr.Interface(
|
| 99 |
fn=yolov8_inference,
|
| 100 |
inputs=inputs,
|
| 101 |
outputs=outputs,
|
| 102 |
+
title="Ultralytics YOLOv8 Segmentation Demo",
|
| 103 |
examples=examples,
|
| 104 |
+
cache_examples=True,
|
|
|
|
| 105 |
)
|
| 106 |
|
| 107 |
+
# Launch the Gradio app
|
| 108 |
+
demo_app.launch(
|
|
|
|
| 109 |
debug=True, # Show detailed errors in case of issues
|
| 110 |
server_name="0.0.0.0", # Host on all IPs
|
| 111 |
server_port=7860, # Custom port for accessing the app
|