Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from huggingface_hub import login, HfApi, snapshot_download
|
3 |
+
from datasets import load_dataset
|
4 |
+
import torch
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments
|
6 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
7 |
+
import pandas as pd
|
8 |
+
import os
|
9 |
+
|
10 |
+
# Streamlit app configuration
|
11 |
+
st.set_page_config(page_title="Katsukiai Dataset Trainer", layout="wide")
|
12 |
+
|
13 |
+
# Sidebar for navigation
|
14 |
+
st.sidebar.title("Navigation")
|
15 |
+
tabs = ["Train", "Train with DeepSeek-V3", "Select Dataset and Format", "About", "Settings"]
|
16 |
+
selected_tab = st.sidebar.radio("Select Tab", tabs)
|
17 |
+
|
18 |
+
# Settings state
|
19 |
+
if "settings" not in st.session_state:
|
20 |
+
st.session_state.settings = {
|
21 |
+
"token": "",
|
22 |
+
"username": "",
|
23 |
+
"use_torch": False,
|
24 |
+
"use_bert": False
|
25 |
+
}
|
26 |
+
|
27 |
+
# Functions
|
28 |
+
def load_katsukiai_dataset(dataset_name):
|
29 |
+
return load_dataset(f"Katsukiai/{dataset_name}", token=st.session_state.settings["token"] if st.session_state.settings["token"] else None)
|
30 |
+
|
31 |
+
def train_with_bert(dataset, model_name="bert-base-uncased"):
|
32 |
+
tokenizer = BertTokenizer.from_pretrained(model_name)
|
33 |
+
model = BertForSequenceClassification.from_pretrained(model_name, num_labels=2)
|
34 |
+
|
35 |
+
def tokenize_function(examples):
|
36 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True)
|
37 |
+
|
38 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
39 |
+
tokenized_dataset.set_format("torch", columns=["input_ids", "attention_mask", "labels"])
|
40 |
+
|
41 |
+
training_args = TrainingArguments(
|
42 |
+
output_dir=f"./converted/results_{st.session_state.settings['username']}",
|
43 |
+
num_train_epochs=3,
|
44 |
+
per_device_train_batch_size=8,
|
45 |
+
save_steps=10_000,
|
46 |
+
save_total_limit=2,
|
47 |
+
)
|
48 |
+
|
49 |
+
KILL trainer = Trainer(
|
50 |
+
model=model,
|
51 |
+
args=training_args,
|
52 |
+
train_dataset=tokenized_dataset["train"],
|
53 |
+
eval_dataset=tokenized_dataset["test"]
|
54 |
+
)
|
55 |
+
trainer.train()
|
56 |
+
return "BERT Training Complete"
|
57 |
+
|
58 |
+
def train_with_deepseek(dataset, model_name="deepseek-ai/DeepSeek-V3"):
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
60 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
61 |
+
|
62 |
+
def tokenize_function(examples):
|
63 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
|
64 |
+
|
65 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
66 |
+
tokenized_dataset.set_format("torch", columns=["input_ids", "attention_mask"])
|
67 |
+
|
68 |
+
training_args = TrainingArguments(
|
69 |
+
output_dir=f"./deepseek/results_{st.session_state.settings['username']}",
|
70 |
+
num_train_epochs=3,
|
71 |
+
per_device_train_batch_size=4,
|
72 |
+
gradient_accumulation_steps=2,
|
73 |
+
save_steps=10_000,
|
74 |
+
save_total_limit=2,
|
75 |
+
fp16=True # Mixed precision for efficiency
|
76 |
+
)
|
77 |
+
|
78 |
+
trainer = Trainer(
|
79 |
+
model=model,
|
80 |
+
args=training_args,
|
81 |
+
train_dataset=tokenized_dataset["train"],
|
82 |
+
)
|
83 |
+
trainer.train()
|
84 |
+
return "DeepSeek-V3 Training Complete"
|
85 |
+
|
86 |
+
# Tab content
|
87 |
+
if selected_tab == "Train":
|
88 |
+
st.title("Train Katsukiai Dataset")
|
89 |
+
api = HfApi()
|
90 |
+
datasets_list = [d.id.split("/")[-1] for d in api.list_datasets(author="Katsukiai")]
|
91 |
+
dataset_name = st.selectbox("Select Dataset", datasets_list)
|
92 |
+
if st.button("Start Training"):
|
93 |
+
dataset = load_katsukiai_dataset(dataset_name)
|
94 |
+
if st.session_state.settings["use_bert"]:
|
95 |
+
result = train_with_bert(dataset)
|
96 |
+
st.success(result)
|
97 |
+
elif st.session_state.settings["use_torch"]:
|
98 |
+
st.write("Training with Torch (custom implementation required)")
|
99 |
+
else:
|
100 |
+
st.write("Basic training (no specific model selected)")
|
101 |
+
|
102 |
+
elif selected_tab == "Train with DeepSeek-V3":
|
103 |
+
st.title("Train with DeepSeek-V3")
|
104 |
+
dataset_name = st.selectbox("Select Dataset", [d.id.split("/")[-1] for d in api.list_datasets(author="Katsukiai")])
|
105 |
+
if st.button("Train with DeepSeek"):
|
106 |
+
if st.session_state.settings["token"]:
|
107 |
+
login(st.session_state.settings["token"])
|
108 |
+
dataset = load_katsukiai_dataset(dataset_name)
|
109 |
+
result = train_with_deepseek(dataset)
|
110 |
+
st.success(result)
|
111 |
+
else:
|
112 |
+
st.error("Please set Hugging Face token in Settings")
|
113 |
+
|
114 |
+
elif selected_tab == "Select Dataset and Format":
|
115 |
+
st.title("Select Dataset and Format")
|
116 |
+
api = HfApi()
|
117 |
+
datasets_list = [d.id.split("/")[-1] for d in api.list_datasets(author="katsukiai")]
|
118 |
+
dataset_name = st.selectbox("Select Dataset", datasets_list)
|
119 |
+
format_option = st.selectbox("Select Format", ["csv", "json", "parquet"])
|
120 |
+
if st.button("Load Dataset"):
|
121 |
+
dataset = load_katsukiai_dataset(dataset_name)
|
122 |
+
df = pd.DataFrame(dataset["train"])
|
123 |
+
if format_option == "csv":
|
124 |
+
st.download_button("Download CSV", df.to_csv(index=False), "dataset.csv")
|
125 |
+
elif format_option == "json":
|
126 |
+
st.download_button("Download JSON", df.to_json(), "dataset.json")
|
127 |
+
else:
|
128 |
+
st.download_button("Download Parquet", df.to_parquet(), "dataset.parquet")
|
129 |
+
|
130 |
+
elif selected_tab == "About":
|
131 |
+
st.title("About")
|
132 |
+
st.write("This app trains models on Katsukiai datasets from Hugging Face.")
|
133 |
+
st.write("Features:")
|
134 |
+
st.write("- Train with BERT or custom Torch models")
|
135 |
+
st.write("- Train using DeepSeek-V3 from Hugging Face")
|
136 |
+
st.write("- Dataset selection and format conversion")
|
137 |
+
st.write("Built with Streamlit, Hugging Face Hub, and PyTorch.")
|
138 |
+
|
139 |
+
elif selected_tab == "Settings":
|
140 |
+
st.title("Settings")
|
141 |
+
token = st.text_input("Hugging Face Token", value=st.session_state.settings["token"])
|
142 |
+
username = st.text_input("Username (for output folder)", value=st.session_state.settings["username"])
|
143 |
+
use_torch = st.checkbox("Use Torch", value=st.session_state.settings["use_torch"])
|
144 |
+
use_bert = st.checkbox("Use BERT & Tokenizer", value=st.session_state.settings["use_bert"])
|
145 |
+
|
146 |
+
if st.button("Save Settings"):
|
147 |
+
st.session_state.settings.update({
|
148 |
+
"token": token,
|
149 |
+
"username": username,
|
150 |
+
"use_torch": use_torch,
|
151 |
+
"use_bert": use_bert
|
152 |
+
})
|
153 |
+
if username and not os.path.exists(f"./results_{username}"):
|
154 |
+
os.makedirs(f"./results_{username}")
|
155 |
+
st.success("Settings saved!")
|