Spaces:
Running
Running
Upload 2 files
Browse files- app.py +116 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pymongo
|
3 |
+
import requests
|
4 |
+
import time
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
import os
|
7 |
+
|
8 |
+
load_dotenv()
|
9 |
+
|
10 |
+
|
11 |
+
# file_path = '/content/free_courses.json'
|
12 |
+
uri = os.getenv("URI")
|
13 |
+
hf_token = os.getenv("HF_TOKEN")
|
14 |
+
client = pymongo.MongoClient(uri)
|
15 |
+
embedding_url = "https://api-inference.huggingface.co/pipeline/feature-extraction/sentence-transformers/all-MiniLM-L6-v2"
|
16 |
+
|
17 |
+
try:
|
18 |
+
client.admin.command("ping") # Sends a ping to the MongoDB server
|
19 |
+
print("Successfully connected to MongoDB!")
|
20 |
+
except pymongo.errors.ConnectionError as e:
|
21 |
+
print(f"Failed to connect to MongoDB: {e}")
|
22 |
+
|
23 |
+
try:
|
24 |
+
db = client.av_courses
|
25 |
+
collection = db.courses
|
26 |
+
# Just trying to fetch the first document (you can adjust the query)
|
27 |
+
sample_doc = collection.find_one()
|
28 |
+
except Exception as e:
|
29 |
+
print(f"Error accessing the database or collection: {e}")
|
30 |
+
|
31 |
+
def generate_embedding(text: str) -> list[float]:
|
32 |
+
|
33 |
+
response = requests.post(
|
34 |
+
embedding_url,
|
35 |
+
headers={"Authorization": f"Bearer {hf_token}"},
|
36 |
+
json={"inputs": text})
|
37 |
+
|
38 |
+
if response.status_code != 200:
|
39 |
+
raise ValueError(f"Request failed with status code {response.status_code}: {response.text}")
|
40 |
+
|
41 |
+
return response.json()
|
42 |
+
|
43 |
+
# for doc in collection.find({'title':{"$exists": True}}).limit(75):
|
44 |
+
# doc['course_embedding_hf'] = generate_embedding(doc['merged_summary'])
|
45 |
+
# collection.replace_one({'_id': doc['_id']}, doc)
|
46 |
+
# print(doc['_id'], end=" ")
|
47 |
+
|
48 |
+
|
49 |
+
# db.avcourses.create_index(
|
50 |
+
# [("course_embedding_hf", pymongo.GEOSPHERE)],
|
51 |
+
# name="CourseSemanticSearch"
|
52 |
+
# )
|
53 |
+
|
54 |
+
|
55 |
+
def getSearchResults(query: str) -> list[object]:
|
56 |
+
|
57 |
+
query_embedding = generate_embedding(query)
|
58 |
+
time.sleep(1)
|
59 |
+
results = collection.aggregate([
|
60 |
+
{"$vectorSearch": {
|
61 |
+
"queryVector": query_embedding,
|
62 |
+
"path": "course_embedding_hf",
|
63 |
+
"numCandidates": 100,
|
64 |
+
"limit": 10,
|
65 |
+
"index": "CourseSemanticSearch"
|
66 |
+
}},
|
67 |
+
{
|
68 |
+
"$addFields": {"score": {"$meta": "vectorSearchScore"}}
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"$match": {"score": {"$gte": 0.55}}
|
72 |
+
},
|
73 |
+
{"$sort": {"score": -1}},
|
74 |
+
{
|
75 |
+
"$project": {"vector": 0}
|
76 |
+
},
|
77 |
+
])
|
78 |
+
return results
|
79 |
+
|
80 |
+
|
81 |
+
# Streamlit UI
|
82 |
+
st.title("Semantic Search Interface")
|
83 |
+
st.subheader("Find the best courses for your query")
|
84 |
+
|
85 |
+
|
86 |
+
query = st.text_input("Enter your query here:")
|
87 |
+
if st.button("Search"):
|
88 |
+
if query:
|
89 |
+
# Generate query embedding
|
90 |
+
with st.spinner("Fetching results..."):
|
91 |
+
results = getSearchResults(query)
|
92 |
+
try:
|
93 |
+
if results:
|
94 |
+
for course in results:
|
95 |
+
st.markdown(
|
96 |
+
f"""
|
97 |
+
### {course['title']}
|
98 |
+
- **Description:** {course['description']}
|
99 |
+
- **Duration:** {course['duration']}
|
100 |
+
- **Ratings:** {course['ratings']}
|
101 |
+
- **Difficulty:** {course['difficulty']}
|
102 |
+
"""
|
103 |
+
)
|
104 |
+
st.markdown(
|
105 |
+
f"[]({course['course_url']})",
|
106 |
+
unsafe_allow_html=True,
|
107 |
+
)
|
108 |
+
|
109 |
+
st.markdown("---")
|
110 |
+
else:
|
111 |
+
st.markdown("No matches found!")
|
112 |
+
except Exception as e:
|
113 |
+
st.markdown(f"rate limit for searching has been completed try after few minutes\n",e)
|
114 |
+
else:
|
115 |
+
st.error("Please enter a query.")
|
116 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
pymongo
|
2 |
+
python-dotenv
|